
FORCHECK
for

Windows

A Fortran Verifier and Programming Aid

version 14.6

User Guide

IDE

December 3, 2014

2

The information in this document is subject to change without previous notice and should not

be taken as a commitment by Forcheck b.v. Forcheck b.v. can not assume responsibility for

any errors which may appear in this document.

The software described in this document is furnished under a license and may be used,

copied or disclosed only when in accordance with the terms of this license.

Copyright ©Forcheck b.v. 1984 through 2015. All rights reserved.

FORCHECK has been developed by Erik W. Kruyt.

FORCHECK is currently available for PC/Windows and PC/Linux.

FORCHECK is a registered trademark of Forcheck b.v.

Absoft is a trademark of Absoft Corporation.

DEC, PDP, VAX, AXP, Alpha, RSX, VMS, OpenVMS, Ultrix and Tru64 UNIX are

trademarks of Hewlett Packard Company.

DR Fortran-77 is a trademark of Digital Research, Inc.

FTN77 and FTN95 are trademarks of Salford Software Ltd.

FTN90 is a joint trademark of Salford Software Ltd and the Numerical Algorithms Group Ltd.

Hewlett-Packard, UX, Fortran/9000 are trademarks of Hewlett-Packard Company.

IBM, MVS, VS Fortran, Professional Fortran, RS/6000 and AIX are trademarks of

International Business Machines Corporation.

Intel is a trademark of Intel Corporation.

Cray, Unicos, CF77 and CF90 are trademarks of Silicon Graphics, Inc.

Silicon Graphics, IRIX and MIPSpro are trademarks of Silicon Graphics, Inc.

Lahey, F77L, LF90 and LF95 are trademarks of Lahey Computer Systems, Inc.

Linux is a registered trademark of Linus Torvalds.

Microsoft, MS-DOS, MS-Fortran, Microsoft Fortran PowerStation, Windows 95,

and Windows NT are trademarks of Microsoft Corporation.

MicroWay and NDP Fortran-386 are trademarks of MicroWay, Inc.

NAG and NagWare are trademarks of The Numerical Algorithms Group Limited.

Prospero Fortran and Pro Fortran-77 are trademarks of Prospero Software.

Ryan-McFarland and RM/Fortran are trademarks of Ryan-McFarland Corporation.

Sun and Solaris are trademarks of Sun Microsystems, Inc.

WATCOM is a trademark of Sybase, Inc.

All other trademarks and registered trademarks are the property of their respective holders.

Website: http://www.forcheck.nl

Email: info@forcheck.nl

Contents

Contents 3

1 Introduction 9

1.1 What does FORCHECK do? . 9

1.2 Why FORCHECK? . 9

1.3 Application Areas . 10

1.4 This manual . 11

2 Installation 13

2.1 The distribution kit . 13

2.2 Password protection and support . 13

2.3 Required configuration . 13

2.4 Installing FORCHECK . 14

2.5 Password . 14

2.6 Uninstalling . 14

2.7 Installation directory . 14

2.8 User settings . 14

2.9 Setup . 15

2.10 Scratch files . 15

2.11 Include files . 15

2.12 Adaptation to your Fortran Compiler . 15

2.13 Specifying default options . 16

2.14 Tryout . 16

2.15 Summary of environmental variables . 16

3 Tutorial 17

3.1 Setup . 17

3.2 Analyzing a single source file . 18

3.2.1 Suppressing messages . 19

3.2.2 Producing a source listing with cross-references 19

3.3 Analyzing more than one source file . 19

3.3.1 Analyzing all source files in one or more directories 20

3.3.2 Analyzing your project: using a command file 20

3.4 The program analysis . 20

3.5 The reference structure or call tree . 21

3.6 The module dependency tree . 21

3

4 CONTENTS

3.7 Using library files . 21

3.8 Using modules . 21

3.8.1 Using third-party libraries . 22

3.9 Portability and conformance to standards . 22

3.9.1 Standard conformance . 22

3.9.2 Compiler emulation . 22

3.9.3 Setting your own, or company standard . 22

3.9.4 Cross-platform development . 23

3.9.5 Using include files . 23

3.9.6 Multi-platform development . 23

4 Operation 25

4.1 Using the IDE . 25

4.1.1 The project view . 25

4.1.2 Creating and opening a project . 26

4.1.3 Adding files to the project . 26

4.1.4 Adding all files in a directory to the project . 26

4.1.5 Removing files from the project . 27

4.1.6 Setting default and project options . 27

4.1.7 Setting file options . 27

4.1.8 Saving a project . 27

4.1.9 Starting the FORCHECK IDE from the Windows Explorer 27

4.1.10 Project analysis . 27

4.1.11 Selective analysis . 28

4.1.12 View, Edit, Print . 28

4.1.13 Make . 28

4.2 Using FORCHECK in command mode . 29

4.2.1 Using Forcheck in interactive mode . 29

4.2.2 Command line Entry . 29

4.2.3 Response file entry . 30

4.3 Options . 30

4.3.1 Program-unit analysis options . 31

4.3.2 Global analysis options . 33

4.3.3 Listing options . 34

4.3.4 Library options . 36

4.3.5 Miscellaneous options . 36

4.3.6 Specifying options in command mode . 37

4.4 Example of FORCHECK command input . 38

4.5 Exit status . 38

4.6 Aborting FORCHECK . 39

4.7 The usage of include files . 39

4.8 FORCHECK library files . 39

4.8.1 Using FORCHECK libraries in the IDE . 40

4.8.2 Using FORCHECK libraries in command mode 40

4.9 The usage of modules . 41

CONTENTS 5

4.10 Maintaining library files . 42

4.10.1 Maintaining library files from the IDE . 42

4.10.2 Maintaining library files in command mode . 42

4.11 The usage of language extensions . 43

4.11.1 Compiler emulation and include files . 44

4.12 Generating Fortran 90 interfaces . 45

4.12.1 Operation of INTERF from the IDE . 45

4.12.2 Operation of INTERF from the commandline 45

4.13 Storing the Reference structure and dependency of modules 45

4.14 Messages . 46

4.14.1 Operational messages . 46

4.14.2 Analysis messages . 46

4.14.3 System messages . 47

4.14.4 Redefinition and suppression of messages . 47

4.14.5 Temporary suppression of messages . 47

4.14.6 Reporting messages . 48

4.15 Tuning the output . 49

4.16 Line or statement numbering . 49

4.17 Date and time format . 50

4.18 Changing default settings from the IDE . 51

4.18.1 Default Options . 51

4.18.2 Directories . 51

4.18.3 Default file name extensions . 51

4.18.4 Compiler emulation . 51

4.18.5 Editor . 51

4.18.6 Build setup . 51

4.18.7 Source line/statement numbering . 52

4.18.8 Date/time format . 52

5 Analysis 53

5.1 Program unit analysis . 53

5.1.1 Interpretation of source code records . 53

5.1.2 Lay-out of source code listing . 54

5.1.3 Syntax analysis . 54

5.1.4 Type verification . 54

5.1.5 Local verification of argument lists . 55

5.1.6 Verification of procedure entries . 55

5.1.7 Fortran intrinsic procedures . 56

5.1.8 Function procedure . 56

5.1.9 Program-unit cross references . 56

5.2 Reference structure (Call tree) . 63

5.2.1 Analysis of the reference structure . 63

5.2.2 Display of the reference structure . 64

5.2.3 Display of sub trees of the reference structure 65

5.2.4 Reference structure in XML format . 65

6 CONTENTS

5.3 Display of module dependencies . 65

5.3.1 Display of dependencies for specific modules 65

5.3.2 Display of module dependencies in XML format 65

5.4 Global program analysis . 66

5.4.1 Verification of procedure references . 66

5.4.2 Verification of argument lists . 66

5.4.3 Verification of common blocks . 66

5.4.4 Verification of modules . 67

5.4.5 Global program cross references . 67

5.4.6 Cross references of common-block objects . 70

5.4.7 Cross references of public module derived types 70

5.4.8 Cross references of public module data . 70

5.5 Specification of procedure interfaces . 71

5.5.1 Using FORTRAN 77 syntax . 71

5.5.2 Using Fortran 90 syntax . 71

5.5.3 Using FORCHECK attributes . 72

5.6 Metrics . 73

5.7 Final report . 73

A Supported Fortran syntax 75

A.1 Compilers supported . 75

A.2 General language extensions supported . 77

A.3 Table with Fortran 77 language extensions . 81

A.4 Table with Fortran 90/95/2003/2008 language extensions 91

A.5 Absoft Fortran 77 extensions . 103

A.6 Apollo/Domain Fortran extensions . 103

A.7 Compaq Fortran extensions . 104

A.8 Control Data 4000 Fortran extensions . 104

A.9 Convex Fortran extensions . 104

A.10Cray Fortran 77 extensions . 104

A.11Cyber NOS/VE Fortran extensions . 105

A.12DEC PDP-11 Fortran-77 extensions . 105

A.13DEC FORTRAN and VAX Fortran extensions . 105

A.14Digital Research Fortran-77 extensions . 105

A.15F2c Fortran 77 extensions . 106

A.16GNU Fortran 77 extensions . 106

A.17HP-UX FORTRAN/9000 and HP Fortran 77 extensions 106

A.18IBM AIX XL FORTRAN extensions . 107

A.19IBM VS Fortran V2 extensions . 107

A.20Intel Fortran extensions . 108

A.21Lahey F77L Fortran-77 extensions . 108

A.22Microsoft Fortran extensions . 108

A.23NDP Fortran extensions . 109

A.24Prime Fortran-77 extensions . 109

A.25Salford Fortran extensions . 109

CONTENTS 7

A.26Silicon Graphics MIPSpro Fortran 77 extensions . 110

A.27Sun Fortran 77 extensions . 110

A.28Unisys 1100 Fortran-77 extensions . 110

A.29Watcom Fortran 77 extensions . 110

A.30Changing the configuration file . 111

A.30.1GENERAL . 111

A.30.2EXTENSIONS . 112

A.30.3INTRINSICS . 113

A.30.4OCI (OPEN/CLOSE/INQUIRE) specifiers . 116

A.30.5MESSAGES . 118

A.30.6OUTPUT . 118

A.30.7VARIOUS . 118

B Limitations 119

B.1 Configuration determined limits . 120

C History of changes 121

D Message summary 123

E References 181

F Glossary 185

Index 199

8 CONTENTS

Chapter 1

Introduction

FORCHECK is a Fortran program development, conversion, maintenance and documentation

tool. It parses Fortran programs, verifies the syntax and composes cross-reference tables. It

analyzes both separate program units and the program as a whole.

1.1 What does FORCHECK do?

FORCHECK verifies the syntax by parsing the source program. This is done as precisely as possi-

ble at compile time. The full Fortran 2008 syntax (which includes the Fortran 2003, Fortran 95,

Fortran 90 and FORTRAN 77 syntax) is supported. Moreover most language extensions of many

compilers are accepted. As an option the syntax can be checked for strict conformance to the

FORTRAN 77, the Fortran 90, the Fortran 95, the Fortran 2003, or the Fortran 2008 standard.

Cross-reference tables of all objects within program units are composed. Information and

warnings concerning the usage of all objects are provided.

The reference structure (call tree) of the program can be analyzed and presented. Recursive

references are traced and verified. The persistence of common-block objects and global module

data is verified.

The consistency of the entire program is verified by checking the category and type of

the procedures and the argument lists of all procedure references. Length, type and structure

of the common blocks specified in the various program units are compared. Cross-reference

tables of all procedures, common blocks, common-block objects, modules, public module data,

external I/O and include files over the program are composed.

FORCHECK can emulate a specific compiler by reading a configuration file in which all

types and language extensions to be supported are enumerated.

The global information of each program unit can be stored in library files which can be

referenced and updated in subsequent FORCHECK runs to test program units in the context of

the entire program.

1.2 Why FORCHECK?

Though your Fortran compiler verifies the syntax of the input source code, this check is in

general far from complete. FORCHECK, however, performs this verification as complete as

9

10 CHAPTER 1. INTRODUCTION

possible at "compile-time". And, what is even more important, FORCHECK not only verifies

the separate program units but also the program as a whole, beyond program unit boundaries.

Procedure types, argument lists and common blocks are all verified for consistency.

FORCHECK saves you time and annoyance because errors are detected as early in the

development process as possible.

As an option FORCHECK checks the conformance of your program to the FORTRAN 77 [1],

the Fortran 90 [2, 3], the Fortran 95 [4], the Fortran 2003 [5], or the Fortran 2008 [6] standard.

Though most compilers have an option to reveal deviations from the standard, they generally

perform this in a limited way. FORCHECK, however, reveals almost all deviations which can be

detected during static analysis. This is of utmost value when developing portable software.

The documentation composed by FORCHECK is compact and especially useful during pro-

gram development and maintenance. The index of program units and module procedures, the

reference structure (call tree) of all subprograms, the dependency tree of all modules and the

cross-reference tables of procedures, common blocks, common-block objects, modules, pub-

lic module data, external I/O and include files, are indispensable whenever you deal with a

program consisting of more than a few program units.

FORCHECK can emulate most language extensions of many compilers. When you tell FOR-

CHECK to emulate the compiler of the target system you can use it as a conversion aid.

The global information of the various program units can be stored in library files. You

can verify newly developed or changed program units in the context of the entire program

by specifying the library files containing the global program information without analyzing all

source code anew. In this way you can develop programs in a modular way without the risk of

creating inconsistencies in the subprogram interfaces.

1.3 Application Areas

FORCHECK can be used to the best advantage in the following application areas:

• Program development. During program development FORCHECK signals syntax errors

and presents warnings both at the program unit and program level. It will detect substan-

tially more of the program flaws than your compiler. Subsequent compilation will raise

no additional error messages any more.

• Program maintenance. The optimal documentation presented, specially the table of con-

tents, the reference structure, the module dependency tree and the cross-reference tables,

will show you exactly where to find all items that will be affected when you change global

items such as an argument list or a common block.

• Education. In contrary to most compilers FORCHECK shows the deviations to the Fortran

standard very precisely. Moreover FORCHECK shows where implicit type conversions and

truncations occur. Invalid references to procedures and inconsistent common blocks are

common errors which are signalled by FORCHECK.

• Conversion. FORCHECK verifies, at wish, if a program is standard conforming. In that

case you will have minimal problems when transferring a program to another computer

system. Moreover FORCHECK can emulate most Fortran extensions of many compilers so

1.4. THIS MANUAL 11

you can verify the portability of your program during development without moving the

source code to the target system.

1.4 This manual

This reference manual does not have the intention to describe the Fortran language or the

Fortran standard. A good working knowledge of the Fortran language and nomenclature is

assumed.

This manual starts with a tutorial to get acquainted with FORCHECK. Then it discusses the

installation and operational procedures. Thereupon a concise description of the program unit

analysis, reference structure, module dependency tree and global program analysis follows. In

the appendices you can find information on the supported Fortran syntax, how you can tune

FORCHECK to accept the compiler extensions of your choice, and the limitations of FORCHECK.

The manual concludes with a message summary with explanations, a glossary, references and

an index.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Installation

2.1 The distribution kit

The FORCHECK for Windows distribution kit consists of the following components:

• The Integrated Development Environment (IDE).

• The FORCHECK analyzer, the FORCHECK librarian and the FORCHECK interface builder.

• The FORCHECK integrated development environment (IDE).

• Forcheck interface libraries for some Fortran libraries.

• This user- and installation guide as a PDF file.

2.2 Password protection and support

A single user FORCHECK license shall be installed and used on one machine only. If more than

on user wants to use FORCHECK on one machine you can purchase a multi-user license, if you

wish to install and run FORCHECK on more than one machine, you need to purchase more

than one FORCHECK license or purchase a site licence. To run FORCHECK a password file is

required. Technical support is provided for registered users only. You can enter a maintenance

license to get email support and the right to download updates.

The FORCHECK GUI, ForcheckIDE, is free software: you can redistribute it and/or mod-

ify it under the terms of the GNU General Public License as published by the Free Software

Foundation, either version 3 of the License, or (at your option) any later version.

2.3 Required configuration

To install and run FORCHECK for Windows you need at least:

• A Personal Computer with an IA-32 processor.

• 512 MB of available memory (RAM).

13

14 CHAPTER 2. INSTALLATION

• Monochrome or color display.

• A fixed disk with 80 MB of free space.

• MS Windows 2000 or up.

• The Forcheck distribution kit.

2.4 Installing FORCHECK

Run forcheck-14.5-win32-x86.exe e.g. by double-clicking on the filename. The setup pro-

gram will start with a welcome screen and asks for a directory to place the FORCHECK for Win-

dows program and ancillary files. By default this is C:\Program Files (x86)\Forcheck\.

Subsequently the installer asks for the components to install. You can choose to install the

FORCHECK analyzer, the FORCHECK IDE, or both. The additional library interfaces are useful

if you develop using the cvf, Intel compiler, or the MPI library.

2.5 Password

Place the supplied password file as fckpwd.pwd in the share subdirectory of the installation

directory.

2.6 Uninstalling

To uninstall FORCHECK for Windows select from the Start menu Settings, Control Panel and

then Add/Remove Programs, or start uninstall from the Forcheck program group in Start/All

Programs.

2.7 Installation directory

The installation path of FORCHECK is stored in the Windows registry, so if you want to install

FORCHECK on a different location you have to uninstall FORCHECK first. If FORCHECK does

not find the installation path in the registry it reads the environmental variable FCKDIR to find

the installation directory.

2.8 User settings

User settings are stored in the subdirectory forcheck of the APPDATA directory, e.g. on Win-

dows XT: Documents and Settings\user\Application Data\Forcheck\, or on Windows 7:

Users\user\AppData\Roaming\Forcheck\.

2.9. SETUP 15

2.9 Setup

You can tune FORCHECK for Windows to your needs in the IDE. See the chapter "Operation".

You also can perform this without using the IDE by specifying some keywords and values in the

FORCHECK configuration file forchk.cfg, which must be in the FORCHECK above mentioned

user settings directory. If this configuration file is not present FORCHECK for Windows inspects

the environmental variables with the same name as the configuration file keywords. See the

next sections.

2.10 Scratch files

FORCHECK stores some information in scratch files. You can specify the path at which these

scratch files are stored with the keyword TMP, for example:

TMP=C:\TMP

By default FORCHECK places the scratch files on the current directory.

2.11 Include files

You can instruct FORCHECK to search for include files on additional paths by specifying the

keyword INCLUDE, for example:

INCLUDE=C:\INCL

More than one include path can be specified by separating the paths by a ’;’. See the chapter

"Operation", section "The usage of include files" for the search strategy for include files.

2.12 Adaptation to your Fortran Compiler

FORCHECK can emulate the syntax and data types of several compilers. See the Appendix

"Supported Fortran syntax" for a list of all compilers and extensions supported.

By default FORCHECK for Windows emulates the Intel Fortran V11 compiler. If you use one

of the other compilers you must configure FORCHECK by specifying an emulation configuration

file in which the proper configuration data is stored.

You can specify the appropriate emulation configuration file with the keyword FCKCNF, for

example:

C:\Program Files (x86)\Forcheck\share\xxx.cnf

in which xxx stands for the identification of the compiler to be emulated. See the appendix

"Supported Fortran syntax" for a list. If your compiler is not on the list, or if you like to define

your own set of language extensions, you must compose a new emulation configuration file.

See appendix "Supported Fortran syntax" section "Changing the configuration file" for details.

16 CHAPTER 2. INSTALLATION

2.13 Specifying default options

FORCHECK has a facility to specify default global options. In this way you don’t have to specify

the options, which you use normally, each time you run FORCHECK. You specify the default

options by specifying the keyword FCKOPT, for example:

FCKOPT=/PW:90/PL:66/F77/DC/-SH/-SI

2.14 Tryout

You can verify if FORCHECK is functioning correctly by analyzing the demonstration program.

Copy the demonstration project files C:\Program Files (x86)\Forcheck\share\examples\demo*.*

to a private directory. Then open the project fckdem.fpj and start the analysis by clicking on

the Analyse all files tool bar icon (The F-check-FULL icon). You now can view the report and

listfile.

2.15 Summary of environmental variables

FCKCNF path of the emulation configuration file to be used

FCKDIR FORCHECK’s base installation directory

FCKOPT default options

INCLUDE additional search paths for include files

TMP path for scratch files

Chapter 3

Tutorial

FORCHECK has many possibilities to analyze your source code. A configuration file and numer-

ous options are available to tune the analysis to your needs. To learn how to use FORCHECK

from scratch this tutorial will guide you by taking small steps from the analysis of a single pro-

gram unit up to a large project. For a complete description of the IDE and the command-line

interface see the chapter "Operation". For a precise clarification of the analysis see the chapter

"Analysis".

3.1 Setup

FORCHECK can handle many Fortran levels, dialects and language extensions. Before analyz-

ing your source code you must instruct FORCHECK which Fortran language level and dialect

to apply. Numerous incorrect and superfluous messages will appear otherwise. By choosing

the configuration file that matches the compiler you use you define the Fortran language level,

dialect and language extensions that will be accepted.

The Intel Fortran 95 compiler emulation is applied by default. This is a Fortran 95 com-

piler with many language extensions, so Forcheck will probably have no difficulty with analyzing

your source code using this emulation. If you use a different compiler you can do the following:

Select Options/Preferences/Compiler emulation from the IDE and select the compiler emula-

tion of your choice, for example the gfortran compiler.

When using FORCHECK in commandline mode set the environmental variable FCKCNF to

the path of the configuration file of your choice, for example for the gnu Fortran compiler,

gfortran:

SET FCKCNF=C:\Program Files (x86)\Forcheck\share\gfortran.cnf

Mind that specifying one of the standard-conforming options such as the Fortran 90 con-

formance (/F90) option does not enable the accompanying language level (Fortran 90) but

17

18 CHAPTER 3. TUTORIAL

merely forces reporting any deviation from this language level standard.

3.2 Analyzing a single source file

It is advisable to start simply by analyzing a single source file. Choose a source file containing

a program unit that does not use modules, or one that contains all the referenced modules. In

this way you can verify the settings and experiment using some of the options. A demo project,

fckdem, is supplied in the examples directory.

To perform an analysis you first have to open an existing or create a new FORCHECK

project. Select Project/Open Project, or Project/New Project from the Menu bar, or click on

the Open or New icon on the tool bar. After selecting or creating a projectfile the project view

is shown as a tree of all files belonging to the project. To add source files to the project select

fortran source, then right click and select Add file(s) or choose Add files in the toolbar. A file

select box pops up and you can select and open the source files of choice.

You may need to specify some options to indicate the source format. Select Options/Project

options from the Menu bar. The Project options window appears and you can check the re-

quired options. The source format options are:

analyze all columns (/AC). Analyze all columns of the source input records (beyond column

72 for fixed source form).

maximum number of continuation lines (/CN:). Allow a maximum of c continuation lines in

a statement. If not specified, the maximum is that as specified in the chosen config-

uration file.

enable cpp preprocessing (/CPP). cpp preprocessing is automatically invoked for source files

with a filename extension of .FPP.

free source form (/FF). Source code input is in free source form. This is the default for source

files with a filename extension of .F90, .F95, .F03, or .F08.

define symbols (/DF:s). Define meta symbols for conditional compilation. The items in the

list must be separated by a ";".

include path (/IP:p). Specify include directories. The items in the list must be separated by

a ";".

You now can start the analysis by clicking on the Analyse all files tool bar icon (The F-

check-full icon). The FORCHECK analyzer will be started and the analysis is carried out. The

progress window shows the steps taken. You can study the result of the analysis by browsing

the reportfile. Expand the report tree in the project view and open the report file by selecting

it and press view on the toolbar, or double click on the filename.

When using FORCHECK in command-line mode an example of the analysis of a single

source file is:

forchk ,mysourcefile;

3.3. ANALYZING MORE THAN ONE SOURCE FILE 19

The default filename extension is .for. For the required options see the previous section. These

options can be specified on the commandline before the source file:

forchk [options],sourcefile;

e.g.

forchk /AC/CN:99/FF/DF:X86/IP:.,mysourcefile.for;

The negative form of an option is the option preceded by NO, e.g. /NOFF for fixed form.

If the source file contains more than one program unit they are analyzed in the sequence

of occurrence and a global analysis is performed in addition to the program unit analysis.

3.2.1 Suppressing messages

If you get an overwhelming number of informational messages and warnings suppress them

for the time being. Select Options/Project options from the Menu bar. The Project options

window appears and you can uncheck the show informative messages (/INF) and/or show

warnings (/WA) option. Or, when using the commandline apply:

/NOINF Do not show informative messages.

/NOWA Do not show warnings.

3.2.2 Producing a source listing with cross-references

For a new project a listing file is added to the project by default. You can view this file by

double clicking on it, or select it and press view on the toolbar. When using the commandline

the syntax is:

forchk listfile,sourcefile;

e.g.:

forchk mylistfile,mysourcefile.for;

or, combined with some options:

forchk mylistfile/FF/NOINF,mysourcefile.for;

Now you have analyzed your first source code it is time to experiment with the available

options which are described in the chapter "Operation". You can tune the analysis, and the

output, just try!

3.3 Analyzing more than one source file

To add source files to the project select the appropriate file category: Fortran source files. Then

right click and select Add file(s) or choose add files from the toolbar. The file select box pops

up. You can select the files you like to add. The project options you have selected hold for the

entire analysis. If you like to specify certain options for a specific source file, or for a group

20 CHAPTER 3. TUTORIAL

of source files, you can specify file options for those source files. Select the source files, select

options/file options. You also can select the files, right click and choose File options from the

pop-up menu.

You now can start the analysis by clicking on the Analyze all files tool bar icon (The F-

check-FULL icon). The FORCHECK analyzer will be started and the analysis is carried out. When

using the commandline the syntax is:

forchk [listfile][options],sourcefiles;

The source files must be separated by a "+". E.g.:

forchk mylistfile/FF,mysourcefile1+mysourcefile2;

The options specified before the source input files are global, they are in effect for the global

analysis and operate on each source input file. If you like to specify certain options for a specific

source file you can specify local options with a source filename. E.g.:

forchk mylistfile/FF,mysourcefile1+mysourcefile2/NOFF;

Now mysourcefile1 is supposed to be in free form and mysourcefile2 in fixed form.

3.3.1 Analyzing all source files in one or more directories

When using the commandline you can specify wild cards to analyze all source files in a directory,

e.g.:

forchk mylistfile/NOINF,*.for/NOFF+*.f90;

3.3.2 Analyzing your project: using a command file

You can place the command input in a file and have FORCHECK read this command input file:

forchk @mycommandfile

The contents of the command file must look like:

[listfile][global_options]

source_input_file_1[local options]+

...

source_input_file_n[local options];

3.4 The program analysis

Analyzing the program as a whole adds an extra dimension to the analysis. When the majority

of the procedures has been included in the analysis you can enable the complete option, com-

plete program (/CO) to signal unreferenced and undefined global items over the program as a

whole. In that case unreferenced procedures, unreferenced common blocks, unreferenced and

3.5. THE REFERENCE STRUCTURE OR CALL TREE 21

undefined common-block objects, unreferenced modules, unreferenced and undefined pub-

lic module procedures, operators and data are flagged. See also the section "Verification of

common blocks" and "Verification of modules" of the chapter "Analysis".

If not all procedures are available you can make the interface available; see the section

"Specification of procedure interfaces" of the chapter "Analysis".

3.5 The reference structure or call tree

FORCHECK can present the call tree in the listing file, or store it in xml format so you can

browse and use it for further analysis or documentation. Though FORCHECK does not display

needless repetitions the call tree may take wallpaper proportions. You can, however, specify

one or more root nodes from where you would like to see the call tree.

show reference structure (/SRS)

show reference structure (/SRS:r) for the roots specified.

If the analyse reference structure (/AR) option is in effect FORCHECK also analyses the tree.

Now procedures that are referenced recursively but are not declared as such, or declared re-

cursively but not referenced recursively are spotted. Unsaved common blocks and module

variables which are not specified in the root of the referencing program units are reported.

From Fortran 2008 on saving is the default and most compilers will store those objects stati-

cally. However, in earlier levels of the standard it is not standard conforming and a potential

risk when porting the program to another platform.

3.6 The module dependency tree

FORCHECK can present the dependencies of modules as a tree. You can also specify specific

modules for which you want to see the dependencies.

show module dependencies (/SMD)

show module dependencies (/SMD:m) for the modules specified.

3.7 Using library files

The purpose of library files and how to use them is explained in the chapter "Operation", section

"FORCHECK library files". The knowledge is needed to understand the next sections, so you are

invited to make this detour now.

3.8 Using modules

When importing modules by the USE statement FORCHECK has to import the public items of

the module to analyze the code. So the imported module has to be analyzed before analyzing

the importing code. FORCHECK stores the public module information in a library file for later

22 CHAPTER 3. TUTORIAL

reference. If the modules are located in front of the importing program unit or if they are in

separate files and you analyze all files in one run, this works fine without noticing. In other

cases you must analyze the referenced modules first and store the result in a FORCHECK library.

When analyzing the source code which references these modules you specify this library file as

a reference library.

3.8.1 Using third-party libraries

When referencing third-party modules, e.g. supplied by the compiler vendor, FORCHECK needs

the interfaces to perform the analysis. FORCHECK cannot read the .mod files as supplied by

the vendor because they are proprietary binary files. If the source code with the interfaces is

supplied by the vendor you can generate a FORCHECK library file containing the interfaces. See

the section "FORCHECK library files" of the chapter "Operation" on how to generate the library

file. If the interface is not supplied in source code, you can compose it from the documentation

as described in the chapter "Analysis", section "Specification of procedure interfaces".

3.9 Portability and conformance to standards

To verify if a program is portable you can instruct FORCHECK to verify if it is standard con-

forming. See the next subsection "Standard conformance". To make your program suitable for

the next Fortran level you can let FORCHECK flag the presence of obsolescent syntax (flag ob-

solescent syntax (/OB) option). It is also possible to instruct FORCHECK to accept only those

language extensions of a compiler that are available in another Fortran language level. This is

elucidated in the subsection "Compiler emulation".

3.9.1 Standard conformance

For optimal portability the program should be standard conforming. FORCHECK verifies stan-

dard conformance very precisely when you specify the Fortran standard conformance (/ST)

option. When this option is applied FORCHECK validates the syntax for conformance to the

Fortran standard of the level that is in effect (as determined by the compiler emulation chosen).

All nonstandard syntax will be flagged.

3.9.2 Compiler emulation

By choosing the appropriate configuration file the correct language level is chosen and the

supported language extensions are enabled. If you want only those language extensions to be

accepted that are in the next Fortran level, you can specify one of the specific conformance

options. E.g. if you apply gfortran.cnf and allow all extensions which are in the Fortran 2003

standard you specify the Fortran 2003 conformance (/F03) option.

3.9.3 Setting your own, or company standard

You also can create a specific configuration file in which you enable those specific language

extensions which are supported by all of the platforms you use and which are acceptable for

3.9. PORTABILITY AND CONFORMANCE TO STANDARDS 23

good programming practice. You now can verify if all programs conform to this requirement.

3.9.4 Cross-platform development

FORCHECK can also be used for cross-platform development. By specifying the compiler emu-

lation file of the target platform FORCHECK will analyze the program as if you were operating

on that target. Problems might arise when include files are being used which are not available,

or have filenames that are not acceptable on the host. See the next subsection. It could also be

necessary to create interfaces for system calls that are not known on the host. Please contact

the FORCHECK developers for advise and assistance. We like to help you and are interested to

learn from your experiences.

3.9.5 Using include files

The syntax for the INCLUDE line or include preprocessor directive can vary with the platform

for which the program has been developed. FORCHECK can handle most dialects. However,

if you analyze the source on e.g. a Windows platform and the source is for unix or VMS, it

could be difficult to place the include files in the correct directories. The paths to search for

include files can be specified for all projects: select Options/Preferences/Directories. Or for

the current project: select Options/Project Options/Include directories.

3.9.6 Multi-platform development

If your code is standard conforming you will have minimal problems to port the program to the

various platforms. You can also create a configuration file in which the language extensions

which are available on all the platforms you support are enabled. The code which is specific

for some of the platforms can be selected using cpp preprocessing, which is supported by

FORCHECK.

Some types can be different on the various platforms. In that case you have to analyze

the code for each platform applying the specific configuration files in which the different types

are listed. FORCHECK presents a warning if you use the implicit type in one instance and the

explicit type in another, e.g. when associating arguments, because that is a portability risk.

24 CHAPTER 3. TUTORIAL

Chapter 4

Operation

4.1 Using the IDE

To start the FORCHECK integrated development environment double-click on the ForcheckIDE

icon. You now see:

• The menu bar with pull-down menus.

• The toolbar with icons for taking certain actions quickly.

• The project view.

• A window for viewing and editing files.

• A toolbar for search and replace.

• A report window.

• The status bar.

You can also start the FORCHECK analyzer from a command window or from the start menu

without using the IDE. This might be of interest for experienced FORCHECK users and for batch

processing. See the section "Using FORCHECK in command mode".

4.1.1 The project view

To analyze Fortran source files you first must create a new, or open an existing FORCHECK

project. You group Fortran source files, additional C source files, include files, library files, a

listing file, report file and reference structure file into a project. (The additional C source files

are only in the project to be able to generate a Make file.) Now you can choose FORCHECK

options to be applied for the project. Additionally you can select specific FORCHECK options

for each separate Fortran source file which overrule the selected project options. The project

can now be saved.

Beside performing a complete analysis of all the source files in the project you can carry

out a quick analysis on one or more specific source file(s) of the project.

25

26 CHAPTER 4. OPERATION

4.1.2 Creating and opening a project

You create a new project by choosing Project from the Menu bar and and select New project,

or you click on the New project, toolbar icon. A file select box pops up and you can select a

directory and enter a filename. The default file name extension for a project file is .fcp. After

selecting save, the project file will be created and the project view is shown.

To open an existing project you choose Project from the Menu bar and select Open project,

or you click on the Open project, toolbar icon. A file select box pops up and you can select the

directory and filename of an existing project file. The default file name extension for a project

file is .fcp. After double clicking on the filename or selecting the filename and pressing open,

the project file is opened and its information is read and shown in the project view.

You can reopen a previously used project by choosing Project from the Menu bar, select

Recent projects and pick your choice.

4.1.3 Adding files to the project

For a new project you now can select the files that belong to the project. We distinguish various

file categories (types). The Fortran source files are the input files to be analyzed. The default file

name extension is user defined (see the section "Changing default settings from the IDE"). The

second category consists of C source or other nonFortran files that belong to the project. They

are only needed to generate a suitable Make file. The third category consists of Fortran include

files. You only have to add these files to the project for editing and searching. The IDE can

automatically add these files to the project. Select Project/Update include dependencies from

the Menu bar to add or update the include files of the project. The fourth category consists

of an optional FORCHECK library file to be created or updated. The fifth category consists of

optional FORCHECK library files to be referenced. Library files are discussed in the section

"FORCHECK library files". The default file name extension for FORCHECK library files is .flb.

The sixth category is an optional listing file, with default file name extension .lst. When

specifying a listing file, all source listings, cross-reference tables and FORCHECK messages are

placed in the listing file. If no listing file has been specified, all messages are send to the report

window and report file only.

The seventh category is an optional report file in which a review of the analysis will be

stored. The default file name extension of the report file is .rep. If no report file is specified,

the review is displayed in the report window.

The last category is an XML file in which the reference structure (call tree) is placed. The

default extension is .xml. See the chapter "Analysis", section "Reference structure in XML

format". All these files are presented in a tree.

To add files to the project first select the appropriate file category (type) by clicking on

it. Then select Project/Add file(s) from the Menu bar, click on the Add file(s) toolbar icon, or

right click in the project window and select Add file(s). The file select box pops up.

4.1.4 Adding all files in a directory to the project

To insert all files in a directory of a category recursively to the project, use this action. This

operation is recursive, so all files in the subdirectories are also added.

4.1. USING THE IDE 27

4.1.5 Removing files from the project

To remove files from the project, select the files to remove by clicking on the filenames in the

Project window and select Project/Remove file(s) from the Menu bar, click on the Remove

file(s) toolbar icon, press delete, or right click on one of the selected filenames and select

Remove file(s). The selected files are removed from the project but not deleted.

4.1.6 Setting default and project options

By setting options you can tune the analysis and output to your needs. By default FORCHECK

applies the options as "factory" determined. You can change these defaults by selecting Op-

tions/Default options from the Menu bar.

For each project you can overrule these defaults by setting project options. For each

specific source input and reference library file you can overrule these project options again by

setting file options.

To set project options select Options/Project options from the Menu bar. The Project

options window appears and you can check or uncheck each enabled option. For a description

of the options see the section "Options".

4.1.7 Setting file options

To set file options first select the source files or the reference library files on which you like

to set options. Select Options/File options from the Menu bar, or right click on one of the

selected filenames and select File options. A file options window appears and you can check

or uncheck each enabled option. For a description of the options see the section "Options".

4.1.8 Saving a project

To save the project select Project/Save project from the Menu bar. The project information is

stored using the filename as specified when opening the project. By choosing Save project as

you can specify a new filename to store the project data. You also can click on the Save project

or Save project as toolbar icon.

If you try to close the FORCHECK IDE and the project has been changed but not yet saved

you are requested to do so.

4.1.9 Starting the FORCHECK IDE from the Windows Explorer

During installation .fcp files are associated with the FORCHECK IDE. So when you have cre-

ated a project you can start the FORCHECK IDE directly from the Windows Explorer by double

clicking on the project file.

4.1.10 Project analysis

To start the analysis of all files in the project, select Analysis/Project analysis from the Menu

bar or click on the Project analysis tool bar icon (The F-check-FULL icon). The FORCHECK

analyzer is started and the analysis is carried out. The progress is shown in the report window.

28 CHAPTER 4. OPERATION

After the analysis has finished you can open the report file. It will be displayed in the report

window. Now you can browse in the report window and study the results of the analysis. You

can step to the next or previous message using the arrows in the toolbar. When you double

click on a report message with file name and line number the source or include file is opened

in the editor on that line so you can view and correct the problem.

4.1.11 Selective analysis

To selectively analyze one or more of the source files, first select the files to be included in

the analysis. You click on the filenames in the project window and select Analysis/Include in

analysis from the Menu bar, click on the Include in analysis tool bar icon (The F+ icon), or

right click on the selected files and select Include in analysis. All files which will be included

in the analysis are now marked by a check icon.

You start the analysis on the selected files by choosing Analysis/Selective analysis from

the Menu bar or clicking on the Selective analysis tool bar icon (the F-check icon). The "Com-

plete program" option is temporary disabled during selective analysis (see the section on op-

tions).

To exclude marked files for a subsequent selective analysis select the files in the project

window and choose Analysis/Exclude from analysis from the Menu bar, click on the Exclude

from analysis tool bar icon (The F- icon), or right click on the selected filenames and select

Exclude from analysis.

4.1.12 View, Edit, Print

To view a file select it and choose File/View, click on the View Toolbar icon, or right click on

the selected filename and select View. To edit a file select it and choose File/Edit, click on the

Edit Toolbar icon, or right click on the selected filename and select Edit.

You can also view or edit a file by double clicking on it. When you double click on a

source file the editor is invoked. For a library file the librarian starts up. For an XML file the

reference-structure browser is started. For other file types the file viewer is invoked.

You can print a file by selecting the file and choosing File/Print from the Menu bar, or

right click on the selected filename and select Print. When generating a listing file FORCHECK

uses the page settings of the default printer. If you like to use another printer, or other page

settings than the default, set up the printer before starting the analysis by choosing File/Page

Setup.

4.1.13 Make

To compile the changed files and link your application you can start a batch or make file from

the IDE. First choose Options/Preferences to set the build utility, e.g. make, or cmake. If you

leave the build utility field empty build assumes a batch file. Her you also can specify the

default settings for generating a make file.

Now you select Project/Configure and generate makefile and fill out the data needed to

generate the make file. The FORCHECK analyser determines the dependencies. Then choose

Project/Execute makefile from the Menu bar or click on the Execute makefile Toolbar icon.

4.2. USING FORCHECK IN COMMAND MODE 29

If the configuration and dependencies have not been changed you can choose the makefile by

selecting Project/Select makefile.

4.2 Using FORCHECK in command mode

The FORCHECK analyzer can be started from a command window or by double clicking on the

FORCHECK-Command Line icon. Command input can be entered in three ways: interactive

entry, command line entry, and response file entry.

4.2.1 Using Forcheck in interactive mode

If you type the FORCHK command without any argument, FORCHECK prompts for each argu-

ment: a listing filename, source input filenames, and library files.

By default no listing file will be generated. In this case all messages will be sent to your

screen. This is suitable for a quick check of one or more program units. The default file name

extension is .lst. If you want to create a listing on your screen, type CON. For a listing on your

printer, type PRN, LPT1, LPT2, or LPT3.

Next you are prompted to specify the source input files to be analyzed. You can specify

as many source input files as you like, separated by a "+" sign. If you end the command line

with a plus sign, FORCHECK prompts for more input files. Every file specification may include

a device name and directory. The source input file specifications may contain wild-cards ("*"),

you can for example specify *.FOR to analyze all Fortran files on the current sub-directory.

After having specified all source input files, FORCHECK prompts for library files. The de-

fault is that you don’t specify a library file. In that case FORCHECK will store all inter-program

unit information in a scratch file, which will be deleted when FORCHECK has completed. You

can, however, save this inter-program unit information by specifying a library file. In subse-

quent FORCHECK runs you can update this library file and reference or include the program

units of one or more library files. See the section "FORCHECK library files" for detailed infor-

mation.

The library files specified must be separated by a "+". When you specify a "+" as the last

character on the line FORCHECK prompts for more library files. You can use wild cards ("*") to

reference a group of library files.

4.2.2 Command line Entry

With command line entry you enter the FORCHK command along with its arguments, without

waiting to be prompted.

You must separate each complete argument from the next with a comma (","). Apart from

this, what you enter is the same as with interactive entry. The command syntax is therefore

the following:

FORCHK [listing_file][global_options],[input_file[local_options]

[+input_file[local_options]]...], [lib_file[lib_option][+lib_file[lib_option]]...]

See the section "Using FORCHECK in interactive mode" for a full description of these arguments.

30 CHAPTER 4. OPERATION

To accept the default for an argument, just enter the separating comma. You can terminate

a partially specified command line by a semicolon (";"). The unspecified arguments all assume

the default values.

When you enter an incomplete list of arguments, and no terminating semicolon has been

specified, FORCHECK prompts you for the next remaining arguments. See the section "Using

FORCHECK in interactive mode" for a full description of FORCHECK prompts.

Examples:

FORCHK ,PROG;

This is a simple and quick way to check the syntax of the (sub)program PROG.FOR. No listing

file will be generated, all messages will be sent to the screen.

FORCHK /F77,SUBR1+SUBR2,PROGLIB/CR

The source files SUBR1.FOR and SUBR2.FOR are analyzed and compared for conformance with

the FORTRAN 77 standard. No listing file will be generated. The global information will be

stored in the newly created library PROGLIB.FLB. The reference structure and the interfaces

between the program units will be checked.

FORCHK PRN/CO/SC/SM„PROGLIB

A cross-reference listing of all global information of the entire program (as stored in the library

file) and cross-reference listings of all common-block objects and all public module variables

will be produced and printed. Unreferenced procedures, unreferenced common blocks, un-

defined and unreferenced common-block objects, unreferenced modules, unreferenced and

undefined public module variables will be listed.

4.2.3 Response file entry

Response files can be used to supply FORCHECK with the appropriate command input. In that

case type

FORCHK @response file

to start FORCHECK. The command input is now read from the response file instead of from

your keyboard. When in interactive mode you can continue command input from a response

file by typing @response file as the response to a prompt.

4.3 Options

Options can be set for an entire project and for each individual file. File options overrule the

project options. We distinguish five categories of options: options to tune the program-unit

analysis, options to tune the global analysis, listing options, library options and miscellaneous

4.3. OPTIONS 31

options. Library options can only specified for library files so they do not show up in the project

and source file options windows. In the following list the mnemonics between parentheses are

the corresponding command line options.

4.3.1 Program-unit analysis options

analyze all columns (/AC)

Analyze all columns of the source input records. If negated and the -ff option is not in effect,

only columns 1 to 72 (after expansion of tabs) will be analyzed. See also the sections "Interpre-

tation of source code records" and "Lay-out of source code listing" of the chapter "Analysis".

Default: /NOAC.

use acquired interface (/AQI)

Use the interface of the previously analyzed subprogram with an implicit interface, if present,

to verify the references during subprogram analysis. If negated the actual argument lists of

the references in the various subprograms will only be verified during global program anal-

ysis. You need to specify this option if you analyse an unrelated set of program units, or if

you have modified interfaces and have not yet updated the FORCHECK libraries containing the

interfaces. Default: /NOAQI.

maximum number of continuation lines (/CN:)

Allow for a maximum of the specified number of continuation lines. If not specified, the maxi-

mum is that as specified in the configuration file. Default: /NOCN.

enable cpp preprocessing (/CPP)

For files with a filename extension of .FPP the default is /CPP. For all other files the default is

/NOCPP.

flag implicitly typed (/DC)

Present a warning for all variables that are not explicitly declared in a type statement. This

is equivalent to specifying the IMPLICIT NONE statement in the source code as supported by

Fortran 90 and as a language extension of many FORTRAN 77 compilers. Default: /NODC.

process D-lines (/DE)

For compilers which support D_lines, lines with D or d in the first column of the source input

records will be processed. They will be treated as comment lines otherwise. For emulation

of the Microsoft Fortran compiler, you can specify one character to control the lines you wish

to include in the processing: /DE:character. If the debug character is not specified, "D" is

assumed. All other lines with an alphabetic character in the first column will be treated as

comment. Default: /NODE.

default double precision (/DP)

Map all default reals to double precision and double precision to REAL(16). Map all default

complex objects to double complex and all double complex to COMPLEX(16). See also default

REAL(8) (/R8). Default: /NODP.

32 CHAPTER 4. OPERATION

flag undeclared external procedures (/EX)

Flag all external referenced procedures which have not been declared external. Default: /NOEX.

The next five options are to verify for Fortran conformance for a specific language level. They

are provided to verify for upwards or downwards conformance relative to the language level

of the current analysis. In general, however, you should use the standard conformance option

which verifies conformance for the language level used for the analysis.

Fortran 77 conformance (/F77)

Check the syntax for conformance with the FORTRAN 77 standard. All nonstandard syntax

will be flagged. Note that this option does not enable FORTRAN 77 syntax by itself. To enable

FORTRAN 77 syntax a configuration file of a FORTRAN 77 compiler must be selected. Default:

/NOF77.

Fortran 90 conformance (/F90)

Check the syntax for conformance with the Fortran 90 standard. All nonstandard syntax will be

flagged. Note that this option does not enable Fortran 90 syntax by itself. To enable Fortran 90

syntax a configuration file of a Fortran 90 compiler must be selected. Default: /NOF90.

Fortran 95 conformance (/F95)

Check the syntax for conformance with the Fortran 95 standard. All nonstandard syntax will be

flagged. Note that this option does not enable Fortran 95 syntax by itself. To enable Fortran 95

syntax a configuration file of a Fortran 95 compiler must be selected. Default: /NOF95.

Fortran 2003 conformance (/F03)

Check the syntax for conformance with the Fortran 2003 standard. All nonstandard syntax

will be flagged. Note that this option does not enable Fortran 2003 syntax by itself. To enable

Fortran 2003 syntax a configuration file of a Fortran 2003 compiler must be selected. Default:

/NOF03.

Fortran 2008 conformance (/F08)

Check the syntax for conformance with the Fortran 2008 standard. All nonstandard syntax

will be flagged. Note that this option does not enable Fortran 2008 syntax by itself. To enable

Fortran 2008 syntax a configuration file of a Fortran 2008 compiler must be selected. Default:

/NOF08.

free source form (/FF)

The source file is in free source form. The specific form of the free source form input depends

on the compiler emulation chosen. For files with a filename extension of .F90, .F95, .F03, F2003,

F08, or .F2008 the default is /FF. For all other files the default is /NOFF.

default 2 byte integers and logicals (/I2)

Default integers occupy 2 bytes by default. The length of logicals will depend on the compiler

emulated.

4.3. OPTIONS 33

default 4 byte integers and logicals (/I4)

Default integers and logicals occupy 4 bytes by default.

default 8 byte integers and logicals (/I8)

Default integers and logicals occupy 8 bytes by default.

flag dummy arguments with no INTENT attribute (/INTENT)

Flag dummy arguments for which no INTENT attribute has been specified. Default: /NOINTENT.

flag undeclared intrinsic procedures (/INTR)

Flag referenced intrinsic procedures which have not been declared intrinsic. Default: /NOINTR.

flag obsolescent syntax (/OB)

Flag syntax which is marked as obsolescent in the Fortran standard which is in effect. Default:

/NOOB.

default REAL(8) (/R8)

Map all default reals to double precision. Map all default complex objects to double complex.

See also default double precision (/DP). Default: /NOR8.

relax type checking (/RE)

Relax type checking on integers, logicals and Holleriths. Mixing of integers and logicals in log-

ical and relational expressions will be accepted. Hollerith constants may be used in relational

expressions. Default: /NORE.

save variables (/SAVE)

Save all variables by default. Default: /NOSAVE.

flag specific intrinsic procedures (/SF)

Flag referenced specific intrinsic procedures. Default: /NOSF.

Fortran standard conformance (/ST)

Check the syntax for conformance with the Fortran standard of the level that is in effect. All

nonstandard syntax will be flagged. Default: /NOST.

4.3.2 Global analysis options

complete program (/CO)

The complete program is analyzed and FORCHECK will flag unreferenced procedures, unrefer-

enced and undefined common blocks, unreferenced and undefined common-block objects, un-

referenced modules, unreferenced and undefined public module variables, unreferenced pub-

lic module constants and unreferenced public module derived types. If the analyse reference

structure (/AR) option and the rigorous syntax analysis (/RI) option are also in effect the call

tree will be traversed to detect unsaved common blocks and modules with unsaved public data

34 CHAPTER 4. OPERATION

which are not specified in the root of referencing program units. See also the sections "Analysis

of the reference structure", "Verification of common blocks" and "Verification of modules" of

the chapter "Analysis". Default: /NOCO.

verify program (/AP)

Analyse the the global program. If this option is not in effect, only the individual program units

are analyzed. See the section "Global program analysis". Default: /AP.

analyse reference structure (/AR)

Analyze the reference structure (call tree). See also the section "Analyzing the reference struc-

ture" of the chapter "Analysis". Default: /AR.

4.3.3 Listing options

page length (/PL:p)

Place a maximum of p lines on a page, p >= 20. By default the IDE automatically takes the

value from the page setup characteristics. Default for the command line version: /PL:62.

page width (/PW:w)

Place a maximum of w characters on a line, 60 <= w <= 255. By default the IDE automatically

takes the value from the page setup characteristics. Default for the command line version:

/PW:100.

reference structure file (/RSF:file)

Specify the name of a file in which the reference structure will be stored in XML format. If no

filename is specified the filename is fckrs.xml. See also the section "Reference structure" of the

chapter "Analysis". This is a command line option only. Default: /NORSF

module dependencies file (/MDF:file)

Specify the name of a file in which the module dependencies will be stored in XML format. If

no filename is specified the filename is fckmd.xml. See also the section "Module dependencies"

of the chapter "Analysis". This is a command line option only. Default: /NOMDF

show program unit (/SB)

Generate listings and cross-reference tables of individual program units. The display of source

lines can be suppressed by disabling the list source lines (/SS) option. See the section "Program-

unit cross references" of the chapter "Analysis". Default: /SB

list source lines (/SS)

List source code. To list source code the show program unit (/SB) option must be in effect

also. See the section "Program-unit cross references" of the chapter "Analysis". Default: /SS.

list included lines (/SH)

List lines included from include files. The Program-units cross-reference and the List source

4.3. OPTIONS 35

line options must also be in effect to list included lines. Default: /SH

list unreferenced items (/SI)

Include unreferenced constants, namelist groups and procedures, declared in include files or

modules, unreferenced common-block objects and unreferenced imported module variables in

the program-unit cross-references. Default: /SI.

show program (/SP)

Show cross-reference listings of the program. See also the section "Global program cross ref-

erences" of the chapter "Analysis". Default: /SP.

show reference structure (/SRS)

Show the complete reference structure of the referenced procedures. See also the section "Ref-

erence structure" of the chapter "Analysis". Default: /SRS.

show reference structure (/SRS:r)

Show the reference structure for the roots specified. The specified roots must be separated by

a ";". Default: /SRS.

show common (/SC)

Show cross-reference listings of common-block objects. See also the section "Cross reference

of common-block objects" of the chapter "Analysis". Default: /NOSC.

show common (/SC:c)

Show cross-reference listings of common-block objects of specified common blocks. The spec-

ified common blocks must be separated by a ";". Default: /NOSC.

show public module derived types (/SMT)

Show cross-reference listings of public module derived types. See also the section "Cross ref-

erence of public module derived types" of the chapter "Analysis". Default: /NOSMT

show public module derived types (/SMT:m)

Show cross-reference listings of public module derived types of specified modules. The speci-

fied modules must be separated by a ";". Default: /NOSMT.

show public module data (/SMV)

Show cross-reference listings of public module data. See also the section "Cross reference of

public module data" of the chapter "Analysis". Default: /NOSMV

show public module data (/SMV:m)

Show cross-reference listings of public module data of specified modules. The specified mod-

ules must be separated by a ";". Default: /NOSMV.

show module dependencies (/SMD)

Show the dependencies of modules. Default: /NOSMD

36 CHAPTER 4. OPERATION

show module dependencies (/SMD:m)

Show the dependencies of specified modules. The specified modules must be separated by a

";". Default: /NOSMD.

4.3.4 Library options

create library (/CR)

Create a new library and insert the analyzed program units in this library. This is a command

line option only. Default: /NOCR.

include (/IL)

Include all program units from the library in the analysis. Default: /NOIL.

specific include (/IL:s)

Include specified program units from the library file in the analysis. Default: /NOIL.

update library (/UP)

Update the specified library with the analyzed program units. Default: /NOUP

4.3.5 Miscellaneous options

batch (/BA)

Exit if errors occur during command input and suppress the "Press enter to continue" prompt at

exit. When FORCHECK is started from a batch file, this option suppresses interactive handling

of command input errors and exit. This is a command line option only. Default: /NOBA.

include dependencies (/ID:d)

Generate a file with all referenced include files. Default: /NOID.

show informative messages (/INF)

Display and count informative messages. Default: /INF.

show warnings (/WA)

Display and count warnings. Default: /WA.

generate makefile (/MK:m)

Append a makefile with dependencies and rules for the source files. The leading part of the

file is generated by the IDE. Default: /NOMK.

rigorous syntax analysis (/RI)

Flag less robust and less portable code at the cost of more informative messages. Do not limit

the number of messages for a statement or argument list. This option is useful when developing

new code and to improve the quality of existing code. Do not use this option when analysing

a project for the first time. Default: /NORI.

4.3. OPTIONS 37

generate a report file (/RP:r)

Generate a report file r. The default file name extension is .rep. If /RP is specified without

a filename, the name of the report file will be FCK.REP. This is a command line option only.

Default: /NORP.

truncate names to 6 significant characters (/TR)

FORCHECK will check whether names are unique after truncation to 6 characters. Default:

/NOTR.

log (/LG)

Show defines and undefines of meta variables. Default: /NOLG.

include path (/IP:p)

Specify directories to search for include files. Default: /NOIP.

define symbols (/DF:s)

Define meta symbols for conditional compilation. Default: /NODF.

4.3.6 Specifying options in command mode

When an option is specified with the listing file the option is global and is therefore in effect

for the entire analysis, except for those input files for which the negated options have been

specified. When you specify an option with an input or library file, the option is local, so it will

only be in effect for that file. A local option overrules the global option temporary.

The /AP, /AR, /CO, /DF, /ID, /IP, /MDF, /MK, /LG, /RP, /RSF, /SC, /SMD, /SMV, /SP, /SRS

options are always global and can only be specified with, or at the position of, the listing file.

Library file options can only be specified with library files.

The options /PL, /PW, /SB, /SC, /SH, /SI, /SMD, /SMV, /SP, /SRS, /SS have only effect if a

listing file has been specified.

Include directories, common blocks, modules, roots, symbols to be defined and program

units in an option argument list must be separated by a ";".

An option can be negated by "NO", or by a "-" sign, for example /NOF77, or /-F77.

Defaults:

/NOAC/AP/NOAQI/AR/NOBA/CN:19/NOCO/NOCR/NODC/NODE/NODF/NODP/NOEX/NOF77/NOF9

/NOFF/NOHE/I4/NOID/NOIL/INF/NOINTENT/NOINTR/NOIP/NOMDF/NOMK/NOLG/NOOB

/PL:62/PW:100/NOR8/NORE/NORI/NORP/NORSF/NOSAVE/SB/NOSC/SH/SI/SMD/NOSMV/SP

/SR/SS/NOTR/NOUP/WA

For files with a filename extension of F90, F95, F03, or F08 the default source form is

freeform (/FF).

On the page headers of the listing the specified nondefault analysis options will be shown.

You can set the default options using the IDE or by editing the file FORCHK.CFG in the

FORCHECK application data directory (the subdirectory forcheck of the APPDATA directory)

38 CHAPTER 4. OPERATION

and specifying these options in the FCKOPT= line. For example:

FCKOPT=/PL:66/PW:100/F77

4.4 Example of FORCHECK command input

Example of FORCHECK command input:

C:>FORCHK

F O R C H E C K V14.0.0

Copyright (c) 1984-2009 Forcheck b.v. All rights reserved

-- INT compiler emulation

listing file [.LST] with global options: FILOUT/F77/NOSH

input file(s) [.FOR] with local options: TSTPRG+SUBR1+SUBR2/NOF77/AC+

input file(s) [.FOR] with local options: \SOURCE\SUBR*/NOSB

library file(s) [.FLB] with options:

In this example FORCHECK analyzes the program consisting of the files TSTPRG.FOR,

SUBR1.FOR, SUBR2.FOR, and all .FOR files from the directory \SOURCE with names beginning

with SUBR. Nonstandard FORTRAN 77 syntax is flagged. Listings with cross references are gen-

erated for all input files but \SOURCE\SUBR*.FOR. The statements of include files are not listed.

All columns of the input records of the file SUBR2.FOR are analyzed. The listings and cross

references are stored in the file FILOUT.LST. No library files will be saved or referenced.

4.5 Exit status

The FORCHECK analyzer exits with a specified exit status which can be tested in for example a

batch job.

Exit status:

0 no informative, warning, overflow, or error messages presented

2 informative, but no warning, overflow, or error messages presented

4 warning, but no overflow, or error messages presented

6 table overflow, but no error messages presented

8 error messages presented

16 fatal error occurred

To prevent closing of the window before you could have examined the results FORCHECK

prompts to press enter to continue at exit. You can suppress this prompt by specifying the

/BA option.

4.6. ABORTING FORCHECK 39

4.6 Aborting FORCHECK

You can abort the command line version of FORCHECK by pressing Ctrl and C key simultane-

ously. All files will be closed and the scratch files deleted before FORCHECK exits.

Only in the case of a power fail or when you reboot your system during the operation

of FORCHECK you may find some temporary files in the directory denoted by TMP= in the file

FORCHK.CFG or, if not specified, in the current directory.

4.7 The usage of include files

When FORCHECK encounters an include line or compiler directive it tries to open and read the

include file specified. When an absolute path has been specified, for example C:\SRC\FILE.INC,

or \PROJECT\INCFIL.INC it opens this file.

When no device or directory or a relative path has been specified FORCHECK first tries to

find that file relative to the directory of the source file in which the include directive has been

specified. Then FORCHECK tries to open the include file relative to the current directory. After

that it uses the directories as specified by the include path (/IP:p) option. When not found it

uses the include paths as specified under Options/Preferences.

You can set the default include paths using the IDE (choose Setup/Directories) or by edit-

ing the file FORCHK.CFG in the FORCHECK installation directory and specifying the include

paths in the INCLUDE= line. You have to separate multiple include paths by a ";".

The default file extension for include files depends on the compiler emulation chosen. See

the sections on compiler emulations and supported Fortran syntax for more information.

4.8 FORCHECK library files

FORCHECK stores the global information of all program units in a FORCHECK library file. You

can save this file for later reference. The first time you specify a library file it has to be created

using the create library (/CR) option. If global program analysis is in effect (this is the default)

all information from the library file is included in the global analysis.

New, or modified program units can now be analyzed and their global information stored

or replaced in the library. You now specify the library file with the update library (/UP) option.

If global program analysis is in effect, all information from the library will again be included in

the global analysis.

When the global information of the program units of a program has been stored in one

or more libraries in this way, you can analyze the program units in the context of the entire

program by referring to these libraries. Now all implicit interfaces are known to FORCHECK and

all references of subprograms can be verified. FORCHECK scans the libraries in the specified

order and includes all referenced program units found in the global analysis. Each individual

library is searched recursively until no references are resolved any more.

You can force FORCHECK to include all or only specific program units from a library in

the analysis.

When you specify no source input files but library files only FORCHECK will perform a

global program analysis, and presents the reference structure and program cross references

40 CHAPTER 4. OPERATION

when asked for. All information contained in the first library file will be included in the analysis

by default. The other libraries are searched for referenced program units as explained before.

4.8.1 Using FORCHECK libraries in the IDE

When you want to create a library file you must specify the filename in the create/update library

file section of the project view. You can do this by first selecting the create/update file category

and then selecting Project/Add file(s), and enter a file specification. You also can right click

on the create/update library file and select add file.

If the file does not exist the library file will be created and the global information of the

analyzed program units will be stored in this library file. If the create/update library file already

exists the actions depend on the preferences selected. The global information of the analyzed

program units is either added to or replaced in the existing library file, or a new library file will

be created. Select Options/Preferences/Libraries to set the preferred actions.

When the global information of a set of program units has been stored in a library in this

way, you can analyze new or changed program units in the context of the previously analyzed

program units by referring to this library. To do this you must promote such a library to the

category of reference library files. You also could create separate projects for maintaining the

library files with all "support" program units and one for each application.

For a reference library file you can specify the include (/IL) option. Using this option you

can force FORCHECK to include all or specific program units from a library in the analysis. If

this option is not specified Forcheck automatically retrieves the referenced subprograms form

the library.

See the section "Maintaining library files" on how to list the contents and remove program

units from the library files.

4.8.2 Using FORCHECK libraries in command mode

When you want to create a library file you specify the create library (/CR) option. The library

file will be created and the global information of the analyzed program units will be stored in

this library file. For example:

FORCHK ,TEST.FOR,TESTLIB.FLB/CR

will analyze the source file TEST.FOR and place the global information in the newly created

library file TESTLIB.FLB.

Now new, or modified program units can be analyzed and their global information stored

or replaced in this library file by specifying the library file with the update library (/UP) option.

For example:

FORCHK ,TEST.FOR,TESTLIB.FLB/UP

will analyze the source file TEST.FOR and replace the global information in the library file

TESTLIB.FLB.

4.9. THE USAGE OF MODULES 41

Now you can analyze new or changed program units in the context of the entire program by

referring to previously created libraries. If no library options has been specified, FORCHECK

references the specified libraries only. For example:

FORCHK ,TEST1.FOR,TESTLIB.FLB

will analyze the source file TEST1.FOR and verify the procedure references, common blocks

etc. of all references which reside in the library file TESTLIB.FLB.

By specifying the include (/IL) option you can force FORCHECK to include all or specific pro-

gram units from a library in the analysis. For example:

FORCHK ,TEST1.FOR,TESTLIB1.FLB/IL:SUB1:SUB2

will analyze the source file TEST1.FOR and verify the procedure references of the program

units SUB1 and SUB2 which reside in the library file TESTLIB.FLB.

In the next two examples we analyse library files only:

FORCHK „PROJECTLIB+PLOTLIB

will analyze the program consisting of all program units contained in the library file PROJECTLIB.FLB

and all references found in the library file PLOTLIB.FLB.

FORCHK „PROJECTLIB+PLOTLIB/IL

will analyze the program consisting of all program units contained in the library files PROJECTLIB.FLB

and PLOTLIB.FLB.

You can delete, compress and list the information of program units in the library file using

the utility FCKLIB. See the section "Maintaining library files".

4.9 The usage of modules

When FORCHECK encounters a USE statement it must have the public information of the mod-

ule at hand. So FORCHECK needs to analyze the referenced modules before the reference is

encountered. Therefore FORCHECK analyzes the input files first for "USE dependencies" and

determines the order to analyze the input files.

The public information of analyzed modules is stored in the specified create or update

library. If no create or update library has been specified this information is stored in a tempory

library file. See the section "FORCHECK library files" for information on how to use library files.

You could also analyze modules first and store the public information in one or more

libraries. When analyzing the referencing program units you must specify these libraries.

42 CHAPTER 4. OPERATION

4.10 Maintaining library files

You can list and remove program units contained in a FORCHECK library file and can compress

it.

When FORCHECK replaces the information of program units it actually stores the new

information at the end of the library file and updates the index. When you remove the infor-

mation of program units from the library file the librarian only removes the index entry from

the library file. To retain the free space from the library file you have to compress it.

Also when you add the information of more and more program units the index of the library

file becomes scattered and the global program unit analysis will take more time. Compressing

the library file makes the index contiguous again.

4.10.1 Maintaining library files from the IDE

To maintain library files select Tools/Librarian from the menu bar. A file select box pops up

and you can select the directory and filename of the FORCHECK library you want to process.

The default file name extension for a library file is .flb. After pressing Open the Librarian

window pops up. You also can select a library file in the project view, choose View from the

toolbar, or right click and select View.

The Librarian lists the program units which interfaces are contained in the library file. To

remove the interface of one or more program units select the names and activate the Remove

button. To compress the library activate the Compress button.

4.10.2 Maintaining library files in command mode

FCKLIB is a utility to maintain FORCHECK library files. You can list and remove program units

and compress the library.

FCKLIB is run by typing the FCKLIB command, with a library file name and options.

The FCKLIB command line has the following form:

FCKLIB library-file/options

where options indicates the actions to be performed.

In interactive mode, you can enter the library file specification as a respond to the system

prompt:

library file:

The default file name extension is .FLB.

The following options can be specified:

/BA Exit if errors during command input. When FORCHECK is started from a batch file,

this option suppresses interactive handling of command input errors.

/HE Present help information on screen.

4.11. THE USAGE OF LANGUAGE EXTENSIONS 43

/CM Compress the library.

/LI List the program units contained in the library. The output is send to the screen.

/LI:l List the program units contained in the library. The output is placed in the file l.

/RM:s Remove one or more program units from the library.

When you specify the /RM option in interactive mode, FCKLIB prompts for a program unit

to be deleted. New prompts appear until you hit just <enter> in response to the prompt.

Examples:

FCKLIB TSTLIB/RM:SUB

This command will remove the program unit SUB from the FORCHECK library file TSTLIB.

FCKLIB TSTLIB/RM:SUB1:SUB2

This command will remove the program units SUB1 and SUB2 from the FORCHECK library file

TSTLIB.

FCKLIB TSTLIB/CM

This command will create a new, compressed, library TSTLIB.FLB out of the existing library

TSTLIB.FLB.

You can combine the /RM and /CM options in one command:

FCKLIB TSTLIB/RM:SUB/CM

When you enter the /RM and the /CM options in one command FCKLIB first will remove the

information on the specified program units from the library file and then will compress it.

4.11 The usage of language extensions

FORCHECK can analyze programs written in FORTRAN 66, FORTRAN 77, Fortran 90, Fortran 95,

Fortran 2003 and Fortran 2008. Moreover FORCHECK supports many language extensions

of the various compilers. When using language extensions, however, a program can become

less portable. FORCHECK can be used to verify portability and to assist in converting Fortran

programs from one platform to another.

When specifying the Fortran standard conformance (/ST) option FORCHECK flags all devi-

ations from the Fortran standard of the level that is in effect, e.g. Fortran 77 when a Fortran 77

compiler emulation has been chosen. If the program is standard conforming, you will have min-

imal problems when converting the program to platforms which support the same or higher

level of the Fortran standard. The flag obsolescent syntax (/OB) option can be used to flag

44 CHAPTER 4. OPERATION

syntax which is marked as obsolescent in the Fortran 90 and up standard. The rigorous syntax

analysis (/RI) option additionally flags less portable code.

The Fortran level, the types and language extensions of a compiler to be emulated are

defined in a configuration file. If you want FORCHECK to emulate a different compiler than the

default compiler on your system you must do the following.

In the IDE select Options/Preferences/Compiler emulation and select the compiler emula-

tion file of your choice, for example g95.cnf. As an alternative you can edit the file forchk.cfg

in the FORCHECK user application data directory and specify the configuration file in the

FCKCNF= line. When using the commandline set the environmental variable FCKCNF, for ex-

ample:

SET FCKCNF=C:\FORCHK\g95.cnf

When you start the analysis you will now get the message:

FCK – g95 compiler emulation

In the appendix "Supported Fortran syntax" of the user guide the supported compilers

are listed. For each of the supported compilers a compiler emulation file is supplied. The

filenames of the compiler emulation files have the extension .cnf.

When using the IDE the default source file name extension can be changed by selecting

Options/Preferences/Extensions.

In the appendix "Supported Fortran syntax" the supported language extensions are listed.

When you want to enable different language extensions than the default you have to make a

copy of the appropriate compiler emulation file and delete or add lines for the specific language

extensions. You can find the numbers of these extensions in the appendix "Supported Fortran

syntax".

You also can verify if the Fortran syntax extensions of the emulated compiler are accepted

by a higher Fortran level. E.g. when specifying the Fortran 2003 conformance (/F03) option

FORCHECK flags all deviations from the Fortran 2003 standard.

4.11.1 Compiler emulation and include files

When you analyze a Fortran source program on a host computer the INCLUDE lines must be

processed by FORCHECK and the include files must be opened and read on the host system.

Therefore FORCHECK will not check the syntax of the filename specified in the INCLUDE line for

conformance to the syntax of the emulated compiler, but allows for the various syntaxes. So, for

example, the VAX Fortran syntax INCLUDE ’(INCL1)/NOLIST’ and INCLUDE ’MODEL:INC1’

will be accepted on all systems. You cannot, however, use, for example, the syntax INCLUDE

’[USER.PROJ]INCLIB(INCL1)’ on non-VMS systems because on non-VMS systems FORCHECK

cannot open a member of an include library file. The VMS symbolic path (like MODEL: in the

example) is stripped by FORCHECK to allow the file to be found on non VMS systems.

Mind that when emulating a certain compiler, the default file name extension (suffix) of

include files is adapted to conform to the defaults of the system and compiler chosen, as

described in the previous section.

4.12. GENERATING FORTRAN 90 INTERFACES 45

4.12 Generating Fortran 90 interfaces

The supplied utility INTERF takes a FORCHECK library file as input and produces a Fortran 90

module with an interface body for each of the subprograms in the library file. The output is in

Fortran 90 free source form.

This can be useful when converting from FORTRAN 77 to Fortran 90 and to examine the

properties of the subprograms as they are contained in the library file. By specifying the module

in the program units which reference these subprograms the interfaces of the subprograms

become explicit and both the compiler and FORCHECK can verify the references while compiling

or analyzing the program unit.

4.12.1 Operation of INTERF from the IDE

To generate an interface select Tools/Interface builder. You now can select a FORCHECK

library file as input and a fortran source file as output file. INTERF places the module with

interfaces in the fortran source output file.

4.12.2 Operation of INTERF from the commandline

The command line has the following form:

INTERF libraryfile[options]

where libraryfile is the name of the FORCHECK library file in which the information of the

program units is stored.

Outputfile is the name of the file in which the generated module with the interfaces will

be stored. The default suffix is .f.

The following options can be specified:

/BA Exit if errors during command input. When FORCHECK is started from a batch file,

this option suppresses interactive handling of command input errors.

/HE Present help information on screen.

/LI:l Place the module with the interfaces in the file l.

4.13 Storing the Reference structure and dependency of mod-

ules

Beside presenting the reference structure (call tree) and the dependency of modules in the

listing file FORCHECK can store the reference structure and the module dependencies in XML

format in separate output files by specifying a filename in the IDE or enabling the reference

structure and module dependencies file options. See also the subsection "Reference structure

in XML format" and "Module dependencies in XML format" of the chapter "Analysis".

46 CHAPTER 4. OPERATION

4.14 Messages

We distinguish three kinds of messages, viz. operational messages, analysis messages and

system messages.

4.14.1 Operational messages

Operational messages are generated when a problem occurs during the operation of FORCHECK.

They are of the form FCK-- ...

For example:

FCK-- open error on input or include file

For many operational messages an i/o status code is presented. This code is system dependent,

and is provided for debugging purposes only. When reporting problems to the FORCHECK

support team, please specify the message and the i/o status code. Operational messages are

sent to the report file and to your screen or log file.

Analysis messages and system messages are sent to the report file and to the listing file if

specified, or to your screen or log file otherwise. The next sections apply to analysis messages

and system messages respectively.

4.14.2 Analysis messages

Those analysis messages flagged with an ‘I’ are informative, with a ‘W’ are warnings, those

flagged with an ‘E’ are errors.

Informative messages hold no conflicts with the Fortran standard. Warnings indicate the

usage of extensions to the standard. Error messages will arise when the Fortran standard has

been violated.

The distinction between warnings and error messages, however, is not principal. In general

we can say that warnings indicate constructions which, if accepted by your compiler, impose

no risk to the proper execution of the program, while errors indicate constructions which may

influence the proper execution.

All analysis messages have a number. In the manual appendix "Message summary" you will

find a list of all messages with explanation for those messages which are not self-explanatory.

During program unit analysis the analysis message is followed by the source line number and

file name to be able to locate the source of the problem in the source file easily. To use this fea-

ture you should, however, not change the method of line or statement numbering as described

in the section "Line or statement numbering".

The following remarks can be made on the presentation of analysis messages:

• Only the first 6 analysis messages in a statement are presented, unless the rigorous syntax

analysis (/RI) option has been specified.

• Only the first 6 problems encountered in an argument list or common block are presented,

unless the rigorous syntax analysis (/RI) option has been specified.

4.14. MESSAGES 47

4.14.3 System messages

When a problem arises in FORCHECK itself (like overflow of a buffer), a system message in

capitals between parentheses will show, for example:

** [5 O] (TOO MANY PROGRAM UNITS, REMAINDER NOT PROCESSED).

A system message is flagged with an O (overflow) or an E (error). Analysis will proceed after an

overflow message, the analysis, however, is no longer complete. A system error is usually fatal.

4.14.4 Redefinition and suppression of messages

This section describes how to redefine the severity level flag of FORCHECK’s diagnostic mes-

sages. To suppress them temporary see the next section.

In the FORCHECK IDE you can redefine messages by selecting Options/Preferences/Messages.

When using the commandline interface you can redefine or suppress diagnostic messages

by extending the configuration file used and add records (using an editor) consisting of the

number of the message to be redefined along with the severity level flag that you want FOR-

CHECK to present. The lines with the messages to be redefined must be placed in the section

"[MESSAGES]".

The numbers and default severity level flags of the messages can be found in the appendix

"message summary". If you specify a level flag ’ ’ (blank) then the message will be suppressed

fully, and will not be counted either. For Example:

335 ’I’

53 ’ ’

These compiler emulation file records specify that the diagnostic message "type conflict" now

will be presented as Informative message and "tab(s) used" will neither be presented nor counted.

To present specific messages only you can suppress all diagnostic messages by placing

the following line in this section:

suppress=’all’

and subsequently list all messages that must be presented with its severity level.

To activate this compiler emulation file see the section "The usage of language extensions".

You can also concatenate a system configuration file with a private option file. To do so,

you place the lines with the redefinitions of messages in a separate file, and redefine FCKCNF

with the list of the two configuration files to be concatenated, for example:

SET FCKCNF=C:\FORCHK\G95.CNF;FCKOPTNS.CNF

In which FCKOPTNS.CNF is your options file.

4.14.5 Temporary suppression of messages

To suppress analysis messages temporary you can insert FORCHECK directives in your source

code. First you have to define the mnemonic of the directive of your choice, beginning with an

48 CHAPTER 4. OPERATION

’!’. You specify this directive string on the "compiler directive" line of the "Various" section of

the configuration file to use. For example:

’!DEC$’ ’!fck’ ’compiler directive strings’

To define ’!fck’ as directive in addition to the ’!DEC$’ compiler directive.

Now you can use this directive to disable and enable FORCHECK diagnostic messages in

the source code. You can either suppress messages in a block of code or in a single statement.

To suppress messages in a block of code add a line with the directive followed by a list of the

message numbers which you want to suppress, each message number preceded by a minus sign.

To enable messages again, add a line with the directive followed by a list of message numbers,

each preceded by a plus sign. You can add online comment after the list of messages. For

example:

CHARACTER*120 CH1, CH2

DATA CH1,CH2/2*’ ’/

!fck -313 -384 !suppress "possibly no value assigned" and "truncation"

CH1 = ’123’

CH2 = ’ab’

!fck +313 +384

To suppress messages for a single, compound, or line with a list of statements only, add

the directive with the list of messages you want to suppress, each preceded by a minus sign,

after the first line of the statement. For example:

CHARACTER CH*120

DATA CH/’ ’/

IF (.TRUE.) CH = ’123’ !fck -384 -314

4.14.6 Reporting messages

During subprogram analysis a message is presented in the listing file after the relevant source

code statement. In the report file, or if no listing file has been requested the message is generally

preceeded by the source code statement. You can suppress the source code statement in the

report file by specifying:

source_stm = ’no’

in the [VARIOUS] section of the configuration file. You also can suppress only the line or

statement number of this source code statement:

source_linstm_number = ’no’

When presenting a message FORCHECK adds a line with the filename and line number. The

format of this line can be specified, e.g.:

file_line_format = ’("(file: ",a,", line: ",i0,")")’

The output of the filename and line can me made gnu-conforming by specifying:

file_line_format = ’(a,":",i0,":")’

If you replace the i0 edit descriptor by an x the line number will be suppressed.

When using the IDE you can adapt the formatting of the messages by selecting Options/Preferences/Message

Format.

4.15. TUNING THE OUTPUT 49

4.15 Tuning the output

The output options as decribed in the section ’Options’ determine which parts of the analysis

are displayed in the listing file. Moreover using the miscellanious options you can specify if

you want to create a report file and if you want to present the internal table usage.

Beside using these command line options you can specify what information is sent to

stdout, is stored in the listing file, and in the report file. You can do this by setting keywords in

the [OUTPUT] section of the configuration file. In the following table the keywords that can be

applied are listed with their meaning and default value. Acceptable keyword values are ’TRUE’

and ’FALSE’.

STDOUT_MSGSUM send message summary to stdout true

STDOUT_METRICS send metrics to stdout false

STDOUT_USAGE send internal table usage to stdout false

LISTING_MSGSUM display message summary in listing file true

LISTING_METRICS display metrics in listing file true

LISTING_USAGE display internal table usage in listing file false

REPORT_MSGSUM store message summary in report file true

REPORT_METRICS store metrics in report file true

REPORT_USAGE store internal table usage in report file true

For example, if you want to see the message summary on your screen and the metrics not, you

specify the following lines in the [OUTPUT] section of the configuration file:

STDOUT_MSGSUM = ’TRUE’

STDOUT_METRICS = ’FALSE’

Note that the keyword value has to be placed within apostrophes. You can concatenate a

system configuration file with a private option file as described in the section ’Redefinition and

suppression of messages’.

In the FORCHECK IDE you can tune the output by selecting Options/Preferences/Output.

4.16 Line or statement numbering

By default FORCHECK numbers each source input line sequentially. Lines in include files are

numbered in an hierarchical way. Line numbering starts anew for each source input file. In this

way you can use your editor to locate the lines of interest in the easiest way.

However, you can instruct FORCHECK to number lines or statements in a different way.

To do so, you can place count_mode option lines in the [VARIOUS] section of the configuration

file. The lines to be added have the form count_mode = ’mode’, in which mode can be:

line number source input lines

statement number statements

new_in_sub start numbering anew for each subprogram

new_in_file start numbering anew for each source input file

new_in_include apply hierarchical numbering for included

50 CHAPTER 4. OPERATION

lines c.q. statements

continue_in_include proceed numbering sequentially for included

lines c.q. statements

For example, if you want statement numbering, beginning from 1 in each subprogram and

proceed statement numbering sequentially in included lines, you specify the following lines in

the [VARIOUS] section of the configuration file:

count_mode = ’statement’

count_mode = ’new_in_sub’

count_mode = ’continue_in_include’

Note that the mode keyword has to be placed within apostrophes. You can concatenate a

system configuration file with a private option file as described in the section ’Redefinition and

suppression of messages’.

When using the IDE you can set the line or statement numbering by selecting

Options/Preferences/Numbering.

4.17 Date and time format

By default FORCHECK presents the date and time according to the ISO standard. You can change

this by adding a date_format or time_format option line to the configuration file in the [VAR-

IOUS] section of the configuration file. The lines to be added have the form date_format =

’format’ and time_format = ’format’, in which format is a template for the presentation of

the date and time respectively.

In the template for the date the day must be specified by dd, the month by mm or mmm (which

causes a three letter mnemonic of the month to be displayed), the year by yy or yyyy. The year,

month and day codes must be separated by a character of your own choice which will be used

as separator in the actual presentation.

In the template for the time the hours must be specified by hh or h (which causes hours be-

low 10 to be displayed with one digit), the minutes by mm, and the seconds by ss. The hour,

minutes and seconds codes must be separated by a character of your own choice which will be

used as separator in the actual presentation.

e.g.:

date_format = ’yyyy-mm-dd’

date_format = ’mmm-dd-yy’

date_format = ’dd/mm/yyyy’

time_format = ’hh:mm:ss’

time_format = ’h:mm:ss’

If you use an x as the format character, the date and/or time will be suppressed in the

listings. This can be usefull if you want to compare listings of different FORCHECK runs.

e.g.:

4.18. CHANGING DEFAULT SETTINGS FROM THE IDE 51

date_format = ’xx xx xx’

time_format = ’xx xx xx’

When using the IDE you can choose the format by selecting

Options/Preferences/Date/time Format.

4.18 Changing default settings from the IDE

The installation defaults can be changed by selecting Options from the menu bar. By selecting

this menu you can change the default behaviour of the IDE and set preferences. The following

preferences can be set: Directories, default file name extensions, the emulated compiler, the

editor of choice, the way lines or statements will be numbered, the date format, the format

and severity level of messages and the default data to build the project. For changing the date

format see the section "Date format". For redefinition of FORCHECK analysis messages see the

section "Redefinition and suppression of messages".

4.18.1 Default Options

In this menu option you can set the options you want FORCHECK to use by default, that means

for new projects and for unchanged project or file options.

4.18.2 Directories

The include directories determine the search path to locate include files. See the section "The

usage of include files" for the search strategy which FORCHECK uses to locate include files.

4.18.3 Default file name extensions

Here you can change the default file name extensions for project, source, library, listing, report

and reference structure files.

4.18.4 Compiler emulation

Here you can choose the compiler you want FORCHECK to emulate. See the section "The usage

of language extensions" for a detailed description.

4.18.5 Editor

By default the Forcheck IDE uses its build-in text editor. By choosing Options/Preferences/Editor

you can specify an editor of your own choice.

4.18.6 Build setup

Here you can specify the default settings for generating a make file and the build utility which

is activated when you press Make on the toolbar, or choose Project/Execute makefile from the

menu. If you leave the build utility field empty build assumes a batch file. To generate a make

52 CHAPTER 4. OPERATION

file choose Project/Configure and generate make file. The make- or batchfile which will be

executed can be specified under Project/Set makefile.

4.18.7 Source line/statement numbering

By default FORCHECK numbers each source input line sequentially. Lines in include files are

numbered in an hierarchical way. Line numbering starts anew for each input file. In this way

you can use your editor to locate the lines of interest in the easiest way.

By selecting this option you can instruct FORCHECK to number lines or statements, start

numbering anew for each subprogram or file, and apply hierarchical or sequential line/statement

numbering in include files. Mind that if you choose a non-default line or statement numbering

the line number which is presented with analysis messages will not be suitable to locate the

source of the problem in the source file automatically.

4.18.8 Date/time format

You can choose from several formats for the presentation of date and time. By selecting the

xxxxxx formats you can suppress the date and/or time in the page headers. This is usefull

when comparing listing files generated at different times.

Chapter 5

Analysis

In this chapter we describe concisely what FORCHECK actually does and what the generated

output exactly means. The analysis is carried out in three stages: the analysis of the separate

program units, the analysis of the reference structure and dependency of modules, and the

analysis of the integral program. Command-line options determine which of the analysis stages

are activated. Beside specifying options you can specify language extensions and analysis

options in the configuration file which is in effect.

5.1 Program unit analysis

5.1.1 Interpretation of source code records

If you specify the free source form (/FF) option FORCHECK reads the source input in free form,

as supported by the compiler emulation chosen. If you specify the Fortran standard confor-

mance (/ST), Fortran 90 conformance (/F90), Fortran 95 conformance (/F95), Fortran 2003

conformance (/F03), or Fortran 2008 conformance (/F08) option as well, FORCHECK reads

the source input according to the Fortran 90 and up free-source form standard.

Tabs are expanded to blanks before the statement is processed. In fixed source form

source lines are extended with blanks or truncated in the following way. If a source line, after

expansion of tabs, consists of less than 72 characters, it will be extended with blanks to 72

characters. This is significant for character and Hollerith constants. Any characters beyond

column 72 are ignored, unless the analyze all columns (/AC) option is in effect.

Lower case characters are converted to upper case before interpretation, except within

character and Hollerith constants. If your compiler does not accept lower case characters,

tabs, or form feeds or when you specify one of the Fortran standard conformance options

one message only will be given for each subprogram to inform you that you used lower case

characters, tabs, or form-feeds respectively. So not every lower case character, tab, or form feed

will be flagged separately. Also if you use include files, only one warning for each subprogram

will be presented.

53

54 CHAPTER 5. ANALYSIS

5.1.2 Lay-out of source code listing

A source code listing is generated if a listing file has been requested, and both the show pro-

gram unit (/SB) and the list source lines (/SS) options are in effect. To make clear which part

of fixed source records is being ignored, the source record past column 72 of non-comment

records is printed at column 83 and higher. Comment records, however, are printed as they are.

If the analyze all columns (/AC) or the free source form (/FF) option is enabled, all records

are printed as they are.

Source input lines or statements are numbered as described in the section "Line or state-

ment numbering" of the chapter "Operation". If the list included lines (/SH) option is specified,

input records which are read from an include file are presented with hierarchical line numbers.

The pages on the listing file are numbered. When you use FORCHECK’s library facility a

hierarchical page numbering system is provided. In that case FORCHECK maintains a library

version number which is updated each time you insert or replace program units in the library.

The page numbers printed on the listing present the library version number and the page

sequence number as "version.page".

5.1.3 Syntax analysis

FORCHECK verifies the syntax of each program unit. If the Fortran standard conformance (/ST)

option is in effect the the syntax will be verified for conformance to the Fortran standard of the

level that is currently in effect. If the Fortran 77 conformance (/F77), Fortran 90 conformance

(/F90), Fortran 95 conformance (/F95), Fortran 2003 conformance (/F03), or Fortran 2008

conformance (/F08) option is in effect, the syntax will be verified for conformance to the

FORTRAN 77, Fortran 90, Fortran 95, Fortran 2003 or Fortran 2008 standard respectively, as

close as possible during static analysis. For Fortran 90 and up all constraints, as specified in

the standard, are verified. By specifying the flag obsolescent syntax (/OB) option FORCHECK

signals all obsolescent features as specified in the Fortran standard which is in effect.

You can also instruct FORCHECK to accept certain vendor specific Fortran language exten-

sions. The appendix "Supported Fortran syntax" describes all language extensions supported.

By default FORCHECK accepts common extensions of the default compiler of the system on

which FORCHECK operates. To emulate a different compiler or to enable a different set of

language extensions, see the section "The usage of language extensions" of the chapter "Oper-

ation".

Beside performing a lexical analysis and parsing the syntax, FORCHECK performs a seman-

tic analysis. FORCHECK presents a message if a variable is referenced without being defined.

Unless the rigorous syntax analysis (/RI) option has been enabled this is limited to statements

which are certainly executed sequentially.

Loop structures, IF-THEN-ELSE blocks and CASE constructs are verified. Because of this,

extended DO loops (though this is a language extension of some compilers) will always be flagged

as an error by FORCHECK.

5.1.4 Type verification

As part of the syntax analysis FORCHECK detects type conflicts. In general the typing rules

are applied more strictly than most compilers do. Type checking is relaxed for type less data

5.1. PROGRAM UNIT ANALYSIS 55

and if the relax type checking (/RE) option has been enabled. FORCHECK signals implicit type

conversions if they impose a certain risk:

• A character datum that is converted to a shorter type, or an integer that is converted to a

shorter integer ("truncation").

• A real or complex expression that is converted to a type of less precision.

• A complex expression that is converted to a real.

• A real expression that is converted to a complex.

• A literal constant that is specified in a type with less precision than that of the target.

This check is relaxed for the value zero.

If you specify the rigorous syntax analysis (/RI) option any implicit type conversion will be

flagged. Moreover padding of character variables with blanks will be flagged unless the right

hand side of the assignment statement is a character constant with zero length or consists of

blanks only.

5.1.5 Local verification of argument lists

Within a program unit the argument list of each reference of a procedure is compared with

the declared interface if the interface is explicit. If the interface is implicit, FORCHECK tries to

locate the interface in the temporary and specified library files. If the interface is not found

the argument list is compared with that of the first reference.

The number of arguments, data types and data-type kind and length must correspond.

When an argument is a scalar at one reference, the argument cannot be an array name at

another reference. In that case the message "array versus scalar conflict" will be presented.

An array element as actual argument is compatible with both an array name and a scalar. In

that case the first occurrence, other than an array element, determines the expected argument

type of the referenced procedure. If array shapes differ and the rigorous syntax analysis (/RI)

option is in effect you are informed.

For argument lists of dummy functions and subroutines all these checks are relaxed and

only informative messages will be presented.

Only the explicit interface specified or the first argument list of an implicit interface, aug-

mented with type information as described, of each reference will be stored to be used in the

global program analysis.

5.1.6 Verification of procedure entries

FORCHECK verifies the dummy (formal) argument list of each individual ENTRY statement of a

procedure. Unreferenced dummy arguments are flagged. If a dummy procedure name is used

after an ENTRY statement, it must be present in the argument list of that ENTRY statement.

Arguments that specify the dimension of adjustable arrays must be present in each ENTRY

argument list in which the name of the adjustable array occurs. After each ENTRY statement

FORCHECK will detect variables which are referenced before they are defined, as long as the

56 CHAPTER 5. ANALYSIS

statements are executed sequentially or if the rigorous syntax analysis (/RI) option has been

enabled.

If the rigorous syntax analysis (/RI) option is in effect FORCHECK informs you if the

"entry blocks" are not disjoint, that is to say if paths from one ENTRY statement and another

coincide. This is relaxed for an ENTRY statement which follows the specification statements

immediately.

5.1.7 Fortran intrinsic procedures

For each reference of a Fortran intrinsic generic function, FORCHECK generates a specific func-

tion according to the data type and data-type kind and length of the arguments. The name of

the generated specific function is inserted in the cross-reference table of referenced procedures.

FORCHECK does not need to recognize all specific functions of every compiler because

you should use preferably the appropriate generic function. Only for type conversion of actual

arguments you may need specific functions, which are supplied.

FORCHECK can flag each intrinsic function which has not been declared intrinsic by spec-

ifying the flag undeclared intrinsic procedures (/INTR) option. By specifying the flag specific

intrinsic procedures (/SF) option you can flag each specific intrinsic function used.

5.1.8 Function procedure

If the function performs external i/o, (de)allocates memory, contains a STOP or PAUSE state-

ment, modifies any argument, common-block object, or saved item and the rigorous syntax

analysis (/RI) option has been enabled, the function is flagged as "impure".

5.1.9 Program-unit cross references

Program-unit and procedure cross references are generated if a listing file has been requested

and the show program unit (/SB) option is in effect. If no program-unit cross references are

being generated, all diagnostic messages are sent the report file and to your screen or log file.

An "..." after a list of line or statement numbers in a cross-reference table indicates that there

are more references to that item than could be presented.

The cross-reference table of each module- and internal procedure is presented straight after

its source code listing. The cross-reference tables of the program unit are presented after all

module- and internal procedures.

Variables in a statement context (data-implied-do-variables, ac-implied-do-variables, forall-indices,

and statement-function-dummy-arguments) are not included in the cross-reference lists. The

cross-reference tables of module- and internal procedures contain locally declared objects and

use-associated objects from locally referenced modules only. Host-associated objects are listed

in the host program unit cross-reference tables.

Subprogram entries

The cross-reference table of entries displays the following information:

• The name of the program unit or procedure entry.

5.1. PROGRAM UNIT ANALYSIS 57

• The program unit or procedure entry type.

• The type of the result.

• The nondefault type kind and length of the result.

• The rank of an array valued result.

• The number of dummy arguments.

• The line or statement numbers of all occurrences of the name of the entry.

The line or statement number at which the entry is defined is flagged with a "#".

Program unit and procedure types:

B BLOCK DATA program unit

F function

M module

P main program

S subroutine

Subcodes:

M module

N interface

R recursive

T internal

Intrinsic types of function entries, named constants, variables, and referenced functions:

C complex

CH character

R real

I integer

L logical

N numeric (integer, real, or complex)

? typeless

58 CHAPTER 5. ANALYSIS

Labels

The cross-reference table of labels displays all labels,the label type, and the line or statement

number of all occurrences. The line or statement number at which the label is defined is flagged

with a "#".

Label types:

F format

L DO loop

For labels, other than DO loop or FORMAT statements, the label type field is left blank.

Derived types

The cross-reference table of derived types displays the following information:

• the name of the derived type.

• the type length: the number of bytes a scalar instance of this type will occupy.

• the line or statement numbers of all occurrences of the name of the derived type.

The line or statement number at which the type is defined is flagged with a "#".

Unreferenced derived types, which are not specified in an include file or a referenced module,

are listed. These derived types are not used and can therefore be removed from the program

unit without affecting the operation of the program.

Constants

The cross-reference table of named constants displays the following information:

• The name of the constant.

• The type: see entries.

• The nondefault type kind and length.

• The rank of array valued constants.

• The size the constant occupies.

• The line or statement numbers of all occurrences of the name of the constant.

The line or statement number at which the constant is defined is flagged with a "#".

Only when the list unreferenced items (/SI) option is in effect, all unreferenced constants

which have been specified in an include file or module, are listed.

For types of named constants see the section on entries.

Unreferenced constants are listed, except those which are defined in an include file or refer-

enced module. These constants are not used and can therefore be removed from the program

unit without affecting the operation of the program.

To get an idea of its size FORCHECK presents the total size of the referenced named constants.

5.1. PROGRAM UNIT ANALYSIS 59

Variables

The cross-reference table of variables displays the following information:

• The name of the variable.

• The type: see entries.

• The nondeafult type kind and length.

• The rank of arrays.

• The size the variable occupies.

• The operation codes.

• The line or statement numbers of all occurrences of the name of the variable.

The line or statement numbers at which the variable is (re)defined are flagged with a "#".

The kind of usage of variables and procedures is presented as a set of operation codes with

the listed meaning. Only one set of operation codes is presented for each variable. The set of

operation codes presented is the or-ed set of operation codes on all array elements, structure

components, or character positions of a variable. The operation codes of the various array

elements, components, or character elements cannot be viewed separately.

operation codes:

A "defined" by means of

- an assignment statement

- an actual argument associated with an INTENT(OUT) dummy argument

- a statement function definition statement

- an ASSIGN statement

- "associated variable" in DEFINE FILE or OPEN

- "IOSTAT=" in an IO statement

- an INQUIRE statement

C in COMMON

D initialized in a DATA or explicit type statement

I input by means of

- READ, or ACCEPT

- list in DECODE

- conversion buffer in ENCODE

- internal file in a READ

L DO variable, or FORALL index

O output by means of

- WRITE, TYPE, PRINT

- list in ENCODE

- buffer in DECODE

- internal file in a WRITE

P dummy argument

60 CHAPTER 5. ANALYSIS

Q in EQUIVALENCE

R referenced, for example by means of:

- an expression

- an argument of an intrinsic procedure

- an argument of a statement function

- an actual argument associated with an INTENT(IN) dummy argument

S actual argument associated with a dummy argument with unknown intent or INTENT(INOUT).

An "*" after C, or Q denotes that the name is not referenced (used) and therefore is dummy.

When variables are specified in an EQUIVALENCE statement, the operation codes are presented

for each variable name separately. However, when a variable is in a common block, all objects

specified in the equivalence lists concerned, are in common and a "C" will be presented for all

these objects. An "*" after this C indicates that none of the objects in the equivalence lists,

containing this variable, have been used.

Only when the list unreferenced items (/SI) is in effect, common-block objects, and mod-

ule data that are not referenced, are included in the cross-reference listing. Referenced but

undefined variables are flagged. Unreferenced variables are flagged, except those which are in

common or in a module. They are not used and can therefore be removed from the subprogram

without affecting the operation of the program.

To get an idea of its size FORCHECK presents the total size of the used local variables. Use

associated, allocatable and automatic objects are not included. Variables with the POINTER

attribute account for the size of a pointer only.

Structures and records

Structures and records are a Fortran language extension as offered by some compiler vendors.

The cross-reference table of records displays the following information:

• The name of the record.

• The name of its structure.

• The length of the structure: the number of bytes a record occupies.

• The rank for arrays of records.

• The operation codes.

• The line or statement numbers of all occurrences of the name of the record.

The line or statement numbers at which the record is (re)defined are flagged with a "#".

The kind of usage of records is presented as an operation code as described for variables. As

for arrays, only one operation code is presented for each record or array of records. This is the

or-ed operation code of all the operations on the various fields of the record and the various

array elements of an array of records.

Only when the list unreferenced items (/SI) option is in effect, common-block objects,

and module records that are not referenced, are included in the cross-reference listing. Unref-

erenced records, which are not in common or in a module, are listed. Unreferenced structures,

which are not specified in an include file or module, are also listed. They are not used and can

therefore be removed from the subprogram without affecting the operation of the program.

5.1. PROGRAM UNIT ANALYSIS 61

Namelist groups

The cross-reference table of namelist groups displays the following information:

• The name of the namelist group.

• The line or statement numbers of all occurrences of the name of the namelist group.

The line or statement number at which the namelist group is defined is flagged with a "#".

Only when the list unreferenced items (/SI) option is in effect, unreferenced namelist groups,

which have been specified in an include file or module, are listed.

Referenced procedures

The cross-reference table of referenced procedures displays the following information:

• The name of the procedure.

• The type: see entries.

• The nondefault type kind and length of a function.

• The rank of array valued functions.

• The operation codes.

• The line or statement numbers of all occurrences of the name of the procedure.

Procedure types:

E external procedure, unknown whether subroutine or function

F function

S subroutine

P procedure

Subcodes:

D dummy

E elemental

G generic

I intrinsic

M module

N interface

n abstract interface

P pure

p pointer

R recursive

S statement

T internal

For the type of functions see the section on entries. Only when the list unreferenced items

(/SI) option is in effect, unreferenced procedures which have been specified in an include file

or module, are listed.

When flagged as unreferenced the external declaration can be removed from the subpro-

gram, except when it declares a block data subprogram to be included by the linker.

62 CHAPTER 5. ANALYSIS

Operators

The cross-reference table of operators displays the following information:

• The name of the operator.

• The line or statement numbers of all occurrences of the operator.

When flagged as unreferenced the definition of the operator can be removed from the

subprogram.

Common blocks

The cross-reference table of common blocks displays the following information:

• The name of the common block.

• The type.

• The size of the common block.

• The operation codes.

The or-ed operation code of all objects in each common block is presented.

• The line or statement numbers of all occurrences of the name of the common block.

Common-block types:

CH character

N numeric

If both character and numeric variables are stored in a common block the type will be left blank.

The size of the common block is presented in bytes. If the name table is full, or if the

common block has too many objects to check, or if an array is too long, the size cannot be

determined and will be left blank.

When none of the objects of a common block have been used, the common block will be

flagged as unreferenced unless is has been specified in an include file or a referenced module.

When flagged as unreferenced the common block declaration can be removed from the subpro-

gram, except when this subprogram is the root of those subprograms which use this common

block and the common-block does not have the SAVE attribute in each of the occurrences. In

that case the declaration may be necessary to save the data and the linker may need it to build

correct overlay structures.

External files

The usage of external files is shown as a list of unit-identifiers with access types and operation

codes. The unit-identifier is the name or expression as specified in the I/O statement.

The value of the unit-identifier is not known to FORCHECK. Therefore I/O references may

be placed incorrectly together or separately. By using consistent names for all unit-identifiers

throughout the program the I/O reference tables, however, will be of utmost value.

type of I/O:

5.2. REFERENCE STRUCTURE (CALL TREE) 63

D direct access

Q sequential access

S stream access

F formatted

U unformatted

When the access type or format type is unknown to FORCHECK, the access type field or format

type field will be left blank.

I/O operation codes:

A auxiliary: REWIND, BACKSPACE, ENDFILE, DELETE, UNLOCK, or LOCKING

C CLOSE

F FIND

I INQUIRE

O OPEN, or DEFINE FILE

R READ, or ACCEPT

W WRITE, REWRITE, PRINT, or TYPE

Include files

Include files which contain only definitions of constants, variables, and common blocks which

are not referenced outside the include file are marked as unreferenced except in the specifica-

tion part of a module. Then the INCLUDE line can be removed from this program unit, except

when common blocks, which are in the root of those subprograms which use these common

blocks and do not have the SAVE attribute, have been declared in the include file concerned. In

that case the declaration may be necessary to save the data and for your linker to build correct

overlay structures.

5.2 Reference structure (Call tree)

The reference structure (call tree) is analysed if the analyse reference structure (/AR) option is

in effect. The reference structure is presented in the listing file if a listing file has been requested

and the show reference structure (/SRS) option is in effect. The reference structure is stored

in XML format in the reference-structure file if the reference structure file (/RSF:file) option

has been specified. This is a command line option only. Using the Windows IDE you must add

the reference-structure file name to the project as described in the chapter "Operation", section

"Adding files to the project".

5.2.1 Analysis of the reference structure

If the analyse reference structure (/AR) option and the rigorous syntax analysis (/RI) is in ef-

fect the call tree will be traversed to detect unsaved common blocks and modules with unsaved

public data which are not specified in the root of referencing program units.

Recursive references are traced, also if one of the entries of a procedure in the chain is

being referenced. If recursive reference is not supported, or the procedures in the chain are

not specified RECURSIVE, these procedures are flagged. Moreover, if the complete program

64 CHAPTER 5. ANALYSIS

(/CO) option has been specified and a procedure is specified RECURSIVE but is not recursively

referenced, it is flagged.

5.2.2 Display of the reference structure

All referenced procedures are presented in a call tree. For each program unit or procedure

each referenced procedure is presented only once and in order of occurrence in the source

code. The reference structure is static only and does not show the actual sequence of calls

during program execution. Module procedures are "qualified" with the name of the module

from which they are referred. Renamed procedures are presented by their "use" name.

The lines are being numbered and when a sub tree has already been presented, a reference

is made to the line at which the sub tree was presented, for example:

1 PROGRAM

2 SUBR1

3 SUB2

4 FUN1

5 FUN2

6 FUN21

3 SUBR2

4 SUB2 > 3

For the reference structure all entries of a procedure are equivalent, so if an entry with its call

tree has been presented, all next entries referenced will refer to this sub tree.

Unreferenced entries with their call tree are presented as separate sub trees and are num-

bered in a hierarchical way, for example:

1 PROGRAM

2 SUBR1

3 SUBR2

1.1 MAIN2

1.2 SUBR3

1.3 SUBR4

When long names are being used and the nesting is too deep for the reference structure to fit

on the page, the tree is continued as a separate sub tree and a reference is made to the line at

which the continued tree starts, for example:

1 PROGRAM_LONG_NAME

2 SUBROUTINE1_LONG_NAME

3 SUBROUTINE11_LONG_NAME

4 SUBROUTINE111_LONG_NAME > 1.1

5 SUBROUTINE2_LONG_NAME

5.3. DISPLAY OF MODULE DEPENDENCIES 65

1.1 >

1.2 SUBROUTINE1111_LONG_NAME

When a procedure has more references than FORCHECK can store in its tables a message

will be printed and the remaining referenced procedures with its references will be printed in

separate sub trees.

5.2.3 Display of sub trees of the reference structure

One or more separate sub trees can be displayed by specifying the roots of the sub trees as the

root list in the show reference structure (/SRS:r) option. Now the referenced procedure tree

is displayed down from the procedures specified only.

5.2.4 Reference structure in XML format

The reference structure is stored in XML format in the reference-structure file together with its

data type definition (dtd). Reference is made to the XSL-stylesheet file _fck_tree.xsl which must

be in the working directory. With a suitable browser you can browse through the reference

structure. Suitable browsers are the one integerated in the FORCHECK IDE, Mozilla Firefox,

Microsoft Internet Explorer, Opera and Apple Safari. You can also transform the XML file to an

HTML file, using for example the Unicorn Enterprises SA XSLT processor

(http://www.unicorn-enterprises.com/products_uxt.html)

the HTML file can then be explored using your internet browser. Because the data are stored

in xml format you also can write your own programs to analyse and visualize the reference

structure.

5.3 Display of module dependencies

The dependencies of modules is presented in in the listing file as a tree view if the show module

dependencies (/SMD)is in effect. The dependencies of modules is stored in XML format in

the dependencies of modules file if the module dependencies file (/MDF:file) option has been

specified. This is a command line option only. Using the Windows IDE you must add the module

dependencies file name to the project as described in the chapter "Operation", section "Adding

files to the project".

5.3.1 Display of dependencies for specific modules

The dependencies of specific modules can be displayed by specifying these modules the root

list in the show module dependencies (/SMD:m) option. Now the module dependencies tree

is displayed down from the modules specified only.

5.3.2 Display of module dependencies in XML format

The module dependencies are stored in XML format in the module dependencies file together

with its data type definition (dtd). See the section "Reference structure in XML format" for

information how to use this file.

66 CHAPTER 5. ANALYSIS

5.4 Global program analysis

Global program analysis is carried out if the verify program (/AP) is in effect.

5.4.1 Verification of procedure references

FORCHECK checks the type of all references, the type, the type length, the rank and shape of

referenced functions. Conflicts of user procedure names with intrinsic procedures are detected.

When the complete program (/CO) has been enabled, unreferenced procedures will be listed.

5.4.2 Verification of argument lists

The argument lists of each procedure reference is compared with the dummy (formal) argument

list of the analyzed procedure. When the referenced procedure has not been analyzed, the

argument lists will be compared with that of the interface definition provided, or with that of

the first reference. Verification is done as specified in the section "Program unit analysis".

Arguments are compared for type, and type parameters. If the rigorous syntax analy-

sis (/RI) option has been enabled and the rank or shape of array arguments differ, you are

informed. If a dummy array argument is longer than the actual an error is presented.

If an actual argument is a constant, expression, active DO variable, an active FORALL index or

if a variable is specified more than once in an actual argument list, then it is invalid to (re)define

the dummy argument in the procedure. In that case the message "invalid assignment" will be

given with the reason. This check will only be performed one reference level deep.

If the assigned dummy argument appears in more than one argument list of the entries of

a procedure, this verification is only carried out, as long as the entries are disjoint.

If a dummy argument is not defined, or referenced before defined, the corresponding

actual argument must be defined before each reference. Because FORCHECK’s limited path-

flow analysis, referenced-before-defined of dummy arguments will only be flagged as long as

statements are guaranteed to be executed sequentially, or if the rigorous syntax analysis (/RI)

option is in effect.

When the actual argument is a literal constant without a kind parameter or a constant

expression of primaries without a kind parameter the type length is supposed to be the default

type length of the type of the constant or constant expression.

5.4.3 Verification of common blocks

The type, size and list of objects of common blocks are compared with the occurrence in

the main program, if present, or with the first occurrence otherwise. The size of the largest

occurrence of the common block is presented in the cross-reference table. An occurrence of a

common block with a different list of objects will be flagged with the message "inconsistent list

of objects". If the rigorous syntax analysis (/RI) option has been enabled each inconsistent

object will be flagged separately. An object could differ in type, type parameters, array length,

array rank, or shape.

When the complete program (/CO) option is in effect and all occurrences of a common

block are identical, common-block objects which are not referenced, not defined, not associated,

or not defined before referenced will be listed. If the rigorous syntax analysis (/RI) option has

5.4. GLOBAL PROGRAM ANALYSIS 67

been enabled each common-block object which is only conditionally defined before referenced

is listed also.

When a common block has been specified in an include file, it should be included from

the same include file at all instances. If that is not the case an informational message will be

presented.

If the analyse reference structure (/AR) option is also in effect the call tree will traversed

to detect unsaved common blocks which are not specified in the root of referencing program

units. See also the section "Analysis of the reference structure".

5.4.4 Verification of modules

When the complete program (/CO) option is in effect each module which is analyzed but not

referenced is reported. All public module variables which are not referenced, not defined, not

allocated or not associated will be listed. All public constants and public derived types which

are not referenced are listed

If the analyse reference structure (/AR) option is also in effect the call tree will be traversed

to detect modules with unsaved public data which are not referenced in the root of referencing

program units. See also the sections "Analysis of the reference structure".

5.4.5 Global program cross references

Global program cross references are generated if a listing file has been requested and the show

program (/SP) option is in effect. If no global program cross references are presented, all

diagnostic messages are send to your screen or the log file. An "..." after a list of names in a

cross-reference table indicates that there are more references to that item than presented.

Module procedures are "qualified" with the name of the module from which they are ref-

erenced. Renamed procedures are presented by their "use" name.

Program units and procedures analyzed

In this table all program units and module procedures which have been analyzed are listed with

the page number of the listing and the filename in which the program unit or module procedure

resides. When you did not ask for a listing of a specific program unit its page number will be

left blank.

When you use FORCHECK’s library facility then a hierarchical page number system will be

applied. The library maintains a version number for each program unit which has been stored

and for which a listing has been made. This program unit version number becomes the library

version number at the moment you insert or replace the program unit. The library version

number will increase at each FORCHECK run in which you update the library. In the table of

analyzed program units and procedures the version number and page number are shown as

"version.page".

Referenced procedures not analyzed

All referenced procedure entries which were not analyzed are listed here. Because a program

often references external procedures of which no Fortran source is available to include in the

68 CHAPTER 5. ANALYSIS

FORCHECK analysis (for example system library routines), no separate messages will be pre-

sented for these "undefined references". To make the analysis more complete see the section

"Specification of procedure interfaces".

Cross reference of program units and procedures

All names of the program, modules, block data program units, external and module procedures

are listed with their type and number of arguments. For functions the type with nondefault

kind and length will also be presented. For each procedure all program units and procedures

which reference that procedure are shown.

Program unit and procedure types:

B BLOCK DATA program unit

E external, unknown whether subroutine or function

F function

M module

P main program

S subroutine

Subcodes:

E elemental

M module

N interface

P pure

R recursive

Intrinsic types of functions and function entries:

C complex

CH character

I integer

L logical

R real

? typeless

The total size of the local data of all program units and procedures is presented. Allocatable

and automatic objects are not included.

Cross reference of common blocks

All common blocks referenced in the program are listed with all subprograms in which the

common blocks have been specified. A "#" in front of a subprogram name indicates that the

common block is modified directly in that program unit or procedure. Mind that if a common-

block object is used as an actual argument of a procedure reference, a modification of the

common block in that procedure will not be indicated.

The type of the data in each common block and the common-block size in bytes are pre-

sented. When the common block has been saved this will be indicated.

Common-block types:

5.4. GLOBAL PROGRAM ANALYSIS 69

CH character

N numeric

When types have been mixed the common-block type will be left blank.

The size of the common block is presented in bytes. When the name table is full, or the

common block has too many objects to check, or when an array or record is too long, the size

cannot be determined and will be left blank. The largest size of all occurrences of the common

block is presented

The total size all common blocks will occupy is presented.

Cross reference of external files

All external files used in the program are shown as a list of unit-identifiers with all subprograms

in which the external files are referenced. The types and operation codes are presented.

The unit-identifier is the name or expression as specified in the I/O statement. Because

the value of the unit-identifier is not known to FORCHECK I/O references may be placed incor-

rectly together or separately. By using consistent names for all unit-identifiers throughout the

program the I/O reference tables, however, will be of utmost value.

Type of I/O:

D direct access

F formatted

S sequential access

U unformatted

When the access or format type is unknown to FORCHECK the access or format type will be left

blank.

I/O operation codes:

A auxiliary: REWIND, BACKSPACE, ENDFILE, DELETE, UNLOCK, LOCKING

C CLOSE

F FIND

I INQUIRE

O OPEN, or DEFINE FILE

R READ, or ACCEPT

W WRITE, REWRITE, PRINT, or TYPE

Cross reference of modules

For each module all subprograms which reference that module are presented.

Module type;

I module nature is intrinsic

N module nature is non-intrinsic

S submodule

70 CHAPTER 5. ANALYSIS

Cross reference of include files

For each include file all program units which contain that include file are presented.

5.4.6 Cross references of common-block objects

Cross references of common-block objects are displayed if a listing file has been requested and

the show common (/SC) option is in effect.

All objects of each common block for which a cross-reference table is requested are listed

with all subprograms in which the common-block object is used. A "#" in front of a subprogram

name indicates that the common-block object is (re)defined directly in that subprogram. Mind

that if a common-block object is used as an actual argument in a subprogram, the common-

block object may be (re)defined indirectly.

A cross-reference of common-block objects is only meaningful if the lists of objects at the

various occurrences of that common block are identical.

If a common-block object is defined and referenced in a single subprogram only, the object

could be replaced by a local variable, or record.

Because the amount of information can be huge if you have many common blocks with

many objects, FORCHECK’s internal tables can easily become full. In that case you have to split

up the process in several runs in which you request the cross references of the objects of a

limited number of common blocks at a time. The optimal procedure is to compose a FORCHECK

library file first and to analyze this library file repeatedly.

5.4.7 Cross references of public module derived types

Cross references of public module derived types are displayed if a listing file has been requested

and the show public module derived types (/SMT) is in effect.

All public derived types of each module for which a cross-reference table is requested are

listed with all subprograms in which the derived type is used. If a derived type is used in one

or more module procedures of the module in which the derived type is used, the module name

is listed instead of the these individual module procedures.

Because the amount of information can be huge if you have many modules with many

public derived types, FORCHECK’s internal tables can easily become full. In that case you

have to split up the process in several runs in which you request the cross references of the

derived types of a limited number of modules at a time. The optimal procedure is to compose

a FORCHECK library file first and to analyze this library file repeatedly.

5.4.8 Cross references of public module data

Cross references of public module data are displayed if a listing file has been requested and

the show public module data (/SMV) is in effect.

All public constants and variables of each module for which a cross-reference table is

requested are listed with all subprograms in which the module constant or variable is used. If

a module constant or variable is used in one or more module procedures of the module in which

the constant or variable is specified, the module name is listed instead of the these individual

module procedures.

5.5. SPECIFICATION OF PROCEDURE INTERFACES 71

A "#" in front of a subprogram name indicates that the variable is (re)defined directly in

that subprogram. Mind that if a variable is used as an actual argument in a subprogram, the

variable may be (re)defined indirectly.

Because the amount of information can be huge if you have many modules with many

public variables, FORCHECK’s internal tables can easily become full. In that case you have to

split up the process in several runs in which you request the cross references of the variables

of a limited number of modules at a time. The optimal procedure is to compose a FORCHECK

library file first and to analyze this library file repeatedly.

5.5 Specification of procedure interfaces

You can make the analysis more complete by defining the interface for all procedures which

have not been included in the analysis, such as system procedures and third party procedure

packages. There are two ways to specify procedure interfaces, namely applying the traditional

FORTRAN 77 syntax or using the Fortran 90/95 syntax features.

5.5.1 Using FORTRAN 77 syntax

You can use FORTRAN 77 syntax to specify a procedure interface by constructing a template

for the procedure. Just specify the appropriate procedure statement (FUNCTION or SUBROUTINE)

with the dummy argument list, a type specification statement for the result in case of a FUNCTION

procedure and a type specification for each of the dummy arguments. If an argument is an input

argument, reference it, if it is an output argument provide an assignment statement to define

it, and if it is an input/output argument reference it first and define it later on. Conclude the

template procedure with an END statement. For example:

FUNCTION MYFUN(ARG1)

REAL MYFUN, ARG1

MYFUN=ARG1

END

Include the templates in the FORCHECK analysis by specifying them as an input source file or

place them in a FORCHECK library file.

5.5.2 Using Fortran 90 syntax

Fortran 90 and up provide the appropriate syntax to specify a procedure interface. You cre-

ate a module and define an interface block. In this interface block you create one or more

interface bodies to define the interfaces of procedures. Each interface body should consist of

the appropriate procedure statement (FUNCTION or SUBROUTINE) with the dummy argument

list, a type specification statement for the result in case of a FUNCTION procedure and a type

specification for each of the dummy arguments. If an argument is an input argument, supply

the INTENT(IN) attribute, if it is an output argument supply the INTENT(OUT) attribute, and if

it is an input/output argument supply the INTENT(INOUT) attribute, which is the default. For

optional arguments specify the OPTIONAL attribute. Conclude the interface body with an END

FUNCTION or END SUBROUTINE statement. For example:

72 CHAPTER 5. ANALYSIS

MODULE PLOTLIB

INTERFACE

FUNCTION MYFUN(ARG1, ARG2)

REAL MYFUN

REAL, INTENT(IN) :: ARG1

REAL, INTENT(IN), OPTIONAL :: ARG2

END FUNCTION MYFUN

END INTERFACE

END MODULE PLOTLIB

Include this module in the FORCHECK analysis by specifying it as an input source file or place

it in a FORCHECK library file.

When using Fortran 90 or up you include the procedure interface in the program-unit anal-

ysis by referring the module which defines the interface. You do this with the USE statement,

for example:

USE PLOTLIB

Even if you are still restricted to use FORTRAN 77 you can apply the Fortran 90 way for the

FORCHECK analysis! Just enable Fortran 90 or up syntax in the FORCHECK configuration file to

analyze the interface modules and enable extension 217, modules, for the analysis of the other

program units. Place the USE statement in an INCLUDE file which you conditionally use for the

FORCHECK analysis. For compilation you replace this INCLUDE file by one with an EXTERNAL

statement specifying the procedure.

You can use the supplied utility INTERF to generate a module with interface bodies from

a FORCHECK library file. See the chapter "Operation".

5.5.3 Using FORCHECK attributes

To define the interface for C, or system procedures, FORCHECK has the possibility to specify

additional attributes for the procedure and dummy arguments. For the global program analysis

they can be specified in an external template procedure. For the program-unit analysis you can

specify procedure attributes in an EXTERNAL statement which could be placed in an INCLUDE

file which you conditionally use for the FORCHECK analysis. For both the program-unit analysis

and the global program analysis you can specify the attributes in an interface body in a module.

These attributes have the form [attribute-list] in which attribute-list is a comma separated

list of attributes. You have to enable the [] type attribute extension, nr 69, in your configuration

file to use this facility.

The following attributes can be specified for dummy arguments:

• OMITTABLE

By specifying the OMITTABLE attribute for a dummy argument of a procedure template

you can tell FORCHECK to allow the actual argument to be left empty.

• PLURI

By specifying the PLURI attribute for a dummy argument of a procedure template you can

tell FORCHECK not to verify the argument.

5.6. METRICS 73

• %VAL

By specifying the %VAL attribute for a dummy argument you specify that actual arguments

have to be passed by value using the %VAL built-in function (VMS). An example of the

specification of the %VAL attribute is:

SUBROUTINE SUB(ARG1[%VAL]).

The following attributes can be specified for external procedure names:

• INQUIRY

By specifying the INQUIRY attribute for a procedure template FORCHECK can indicate

that the arguments do not have to be defined or associated. For example:

REAL FUNCTION FUN[INQUIRY](Arg1)

And within a subprogram: EXTERNAL FUN[INQUIRY].

• PLURI

By specifying the PLURI attribute for a procedure interface you can tell FORCHECK not to

verify the number of arguments and the argument lists, for example:

REAL FUNCTION FUN[PLURI](Arg1,Arg2)

And within a subprogram: EXTERNAL FUN[PLURI].

• SUBREF

By specifying the SUBREF attribute for a procedure template you can allow a CALL to a

function procedure, for example:

REAL FUNCTION FUN[SUBREF](Arg1,Arg2).

And within a subprogram: EXTERNAL FUN[SUBREF].

• VARYING

By specifying the VARYING attribute for a procedure template FORCHECK can allow a

varying number of arguments. For example:

REAL FUNCTION FUN[VARYING](Arg1,Arg2)

And within a subprogram: EXTERNAL FUN[VARYING].

5.6 Metrics

If a listing file has been requested a table will be presented with some metrics of each program

unit and procedure. This table shows the number of (non-comment) source lines, (non-blank)

comment lines, statements and maximum construct nesting. The number of source lines, com-

ment lines, and statements are split up into a total as read in, and the number not read from

include files.

In the totals the lines and statements of the include files are counted only once for each

include file.

The program metrics shows the number of program units, (sub)modules, subprograms,

module procedures, internal procedures and source files analyzed.

5.7 Final report

After completing the analysis, a final report will be presented with a message summary.

74 CHAPTER 5. ANALYSIS

The message summary lists all messages presented and the number of messages in each

category. It will be stored in the report file and, when the listing device is not your screen, it

will both be included in the listing file and presented on your screen.

If the log (/LG) option has been enabled, the usage of FORCHECK’s internal tables will also

be displayed.

Appendix A

Supported Fortran syntax

Forcheck supports the full Fortran 2008 syntax, which includes Fortran 2003, Fortran 95, For-

tran 90 and Fortran 77. Moreover FORCHECK supports many of the language extensions of

various compilers. Not all the vendor specific Fortran language extensions which FORCHECK

can support for a compiler being emulated are enabled by default. The reason is that some

of the language extensions are only provided to be compatible with earlier versions of that

compiler or now have standard Fortran equivalents which you can use preferably. Moreover

some of the extensions make a program less secure, for example less strict type checking, so

enabling these extensions will weaken the possibilities of FORCHECK to detect programming

flaws. FORCHECK has, by default, enabled only those Fortran language extensions which:

• Are generally accepted and have no standard Fortran equivalent, or are present in a more

recent Fortran standard,

• Impose no risk and can be easily converted to standard Fortran,

• Improve the readability or the maintainability.

In the table in Section A.3 on page 81–89 the language extensions, relative to Fortran 77,

which are supported by FORCHECK are listed. In the table in Section A.4 on page 91–101 the

language extensions, relative to Fortran 90 and Fortran 95, which are supported by FORCHECK

are listed.

In the tables you can see which extensions are supported by FORCHECK and the various

compilers. A "+" denotes an extension which is by default enabled by FORCHECK if the compiler

emulation concerned has been chosen. A "o" denotes an extension which is by default not

enabled. A "@" means the support of that particular extension is explained in the text.

You can enable or disable each of the listed extensions by editing the appropriate configu-

ration file. For Fortran 90, Fortran 95, Fortran 2003, or Fortran 2008 compilers you can use the

respective default configuration file as a template. See the section "Changing the configuration

file".

A.1 Compilers supported

Configuration files for the following Fortran 77 compilers are supplied. In the first column the

filename of the configuration file is listed (without the filename extension). The second column

75

76 APPENDIX A. SUPPORTED FORTRAN SYNTAX

presents the mnemonic used in the table of Fortran extensions.

Configuration file Mnemonic Compiler name

absoftf77.cnf AB Absoft FORTRAN 77 V4.3

cyber.cnf CBR Control Data Cyber NOS/VE Fortran Version 1, level 1.6, PRS level 700

cd4000.cnf CD4 Control Data 4000 Fortran

convex.cnf CVX Convex Fortran, Version 6.0

crayf77.cnf CF77 Cray Fortran 77, V4

decvms.cnf DAV DEC Equipment FORTRAN for Open VMS Alpha

decux.cnf DEC Digital Equipment FORTRAN for Ultrix and DIGITAL UNIX

domain.cnf Apollo/Domain Fortran, SR 10

vax.cnf VAX Digital Equipment VAX Fortran, Version 5.0 and

VAX Fortran-HPO, Version 1.0

f2c.cnf F2C F2c Fortran 77

g77.cnf F77 GNU Fortran 77

hp77.cnf HP Fortran 77 for series 800

hp9000.cnf HP9 HP-UX FORTRAN/9000 for series 300/400/700 and 800

ibmvs2.cnf VS2 IBM VS Fortran, Version 2, Release 2.5

laheyf77.cnf LH Lahey F77L, V5.00 and F77L-EM32 V5.00

msf5.cnf MS5 Microsoft Fortran, V5.1 and Microsoft Fortran PowerStation, V 1.0

ndp.cnf NDP NDP Fortran, Release 2.0

pdp11.cnf PDP DEC Equipment PDP-11 Fortran-77, Version 5.0

prime.cnf PR Prime Fortran-77, T1.0-21.0

prospero.cnf PF Prospero Fortran, V2.12

rm.cnf RM Ryan-McFarland RM/Fortran, V1.00 and IBM Professional Fortran, V1.23

rm2.cnf RM2 Ryan-McFarland RM/Fortran, V2.40

sgif77.cnf SGI Silicon Graphics MIPSpro Fortran 77, Version 3.4.1

sunf77.cnf SUN Sun Fortran 77

ftn77.cnf FTN Salford FTN77, V3.62

unisys.cnf UNI Unisys 1100 Fortran-77, L10

watcom.cnf WAT WATCOM Fortran 77 V11.0

Not all of the compilers are listed in the table. The DEC FORTRAN for AXP/VMS (DAV)

extensions are equivalent to those of DEC; only the default file name extensions differ. For

the Digital Research compiler a configuration file with the supported types is supplied and the

%INCLUDE directive is supported. When you want FORCHECK to accept the Digital Research

compiler extensions you have to adapt the configuration file.

Configuration files for the following Fortran 90, Fortran 95, Fortran-2003 and Fortran 2008

compilers are supplied:

A.2. GENERAL LANGUAGE EXTENSIONS SUPPORTED 77

Configuration file Mnemonic Compiler name

absoftf95.cnf AB95 Absoft FORTRAN 95 V6

crayf90.cnf CF90 Cray Fortran 90, V2

crayf03.cnf Cray Cray Fortran, V7

cvf.cnf CVF Compaq Visual Fortran V6.6

decf90.cnf DEC Fortran 90

decf95.cnf DEC DEC Fortran 95

fujitsu.cnf FUJ Fujitsu Fortran 90

gfortran.cnf gfort GNU Fortran 95

g95.cnf g95 Open source Fortran 95 based on GNU

hpf95.cnf HP95 Fortran for HP-UX

intel7.cnf Intel Visual Fortran V7.0

intel9.cnf Intel Visual Fortran V9.0

intel0.cnf Intel Visual Fortran V10.0

intel11.cnf Intel Visual Fortran V11.0

intel12.cnf Intel Visual Fortran V12.0

intel13.cnf INT Intel Visual Fortran V13.0

ibmxlf.cnf XLF IBM AIX XL Fortran

laheyf90.cnf LF90 Lahey Fortran 90

laheyf95.cnf LF95 Lahey Fortran 95

msfps.cnf MSF Microsoft Fortran PowerStation V4.0

nagf90.cnf NagWare f90 Compiler

nagfor.cnf NAG NagWare f95 Compiler

nasf95.cnf NASoftware Fortran Plus Compiler

pgif90.cnf The Portland Group Fortran 90 Compiler

pgif95.cnf PGI The Portland Group Fortran 95 Compiler

pathscale.cnf PATH PathScale EKOPath Compiler

pgif03.cnf The Portland Group Fortran 2003 Compiler

ftn90.cnf Salford FTN90

ftn95.cnf FTN Silverfrost FTN95

sgif90.cnf Silicon Graphics MIPSpro Fortran 90, Version 7.3

sgif95.cnf SG95 Silicon Graphics MIPSpro Fortran 95

sunf90.cnf SF90 Sun Fortran 90

sunf95.cnf SF95 Sun Fortran 95

The Fortran 90/95 extensions marked in the column F2003 of the table are included in

the Fortran 2003 standard. The Fortran 90/95 extensions marked in the column F2008 of the

table are included in the Fortran 2008 standard.

A.2 General language extensions supported

• Tab formatting is supported when fixed form source is enabled. If the first column of a

fixed form input record consists of a tab succeeded by a digit as continuation character,

then the continuation character will be located at column 6 and the next characters from

column 7 on. If this tab is not followed by a digit the next characters are placed from

78 APPENDIX A. SUPPORTED FORTRAN SYNTAX

column 7 on. Subsequent tabs, or tabs in columns past the continuation field are expanded

to blanks to columns 9, 17, 25, etc. before processing the statement.

This is different from the way some compilers will treat tabs. Some compilers consider

tabs after column 6 as one blank character or discard tabs at these positions. Because of

this difference FORCHECK may locate characters past column 72, discarding them, while

the compiler will not.

This way has been chosen because an expansion of tabs will generally be used when source

code is transformed to standard Fortran 77, or when sending your program to a different

computer system. Moreover the compiler will probably expand tabs in the source listing.

In the FORCHECK way you can see which characters will be interpreted by any compiler

and which may not.

• Though some compilers accept longer source records (e.g. in free form), the maximum

record size FORCHECK can read is 512 characters, after expansion of tabs and of cpp

macros.

• Though some compilers support an unlimited number of continuation lines FORCHECK

can read up to 999 continuation lines.

• LOGICAL*1 data are treated as logicals. BYTE data as integers.

• The nonstandard form of the PARAMETER statement (without parentheses) is not equiva-

lent to the standard Fortran PARAMETER statement. In the nonstandard form the type of

the named constant takes the type of the literal constant, which may be different from

that of the implicit or specified type of the name using the Fortran 77 syntax.

• Though a specific compiler may support longer names, FORCHECK supports names of up

to 64 characters only.

• Some compilers support directives which are identified by a key in the first columns fol-

lowed by a keyword. These compiler directive strings can be specified in the configuration

file. Some of these directives will not only be accepted, but also interpreted by FORCHECK:

see the notes on each specific compiler emulation.

• Some compilers support directives using keywords in column 7-72. Detection of these

keywords can be enabled if the keyword is present in the tables of Fortran language

extensions.

• FORCHECK can handle cpp preprocessor directives. cpp preprocessing is enabled by

enabling extension 7 in the configuration file. You can also enable or disable cpp prepro-

cessing using the enable cpp command line option or by setting this option in the IDE.

Parameterized macro expansion is supported with some limitations. The macro must be

on a single line and variadic macros are not supported. Macro expansion must be used

with great care because it can cause significant characters be placed beyond character

position 72 in fixed source format and change character constants. If a file includes an-

other file with the Fortran INCLUDE statement, the included file is not preprocessed. Files

included using the cpp directive #include are preprocessed.

A.2. GENERAL LANGUAGE EXTENSIONS SUPPORTED 79

The usage of language extensions will be flagged when the Fortran standard conformance

(/ST), the Fortran 77 conformance (/F77), the Fortran 90 conformance (/F90), the Fortran 95

conformance (/F95), the Fortran 2003 conformance (/F03), or the Fortran 2008 conformance

(/F08) option has been specified. By specifying the flag obsolescent syntax (/OB) option all

language features which are marked as obsolescent in the Fortran standard which is in effect

will be flagged.

80 APPENDIX A. SUPPORTED FORTRAN SYNTAX

A.3. TABLE WITH FORTRAN 77 LANGUAGE EXTENSIONS 81

A.3 Table with Fortran 77 language extensions

82 APPENDIX A. SUPPORTED FORTRAN SYNTAX

no. PDP VAX VS2 UNI CBR PR CF77 CVX

maxima in lay-out:

max. number of characters per line 88 132 80 80 80 80 96

max. number of continuation lines 99 @ 99 @ 19 @ 99 19

max. length of names 6 31 31 6 7 32 31 @

max. length of subprogram names 6 31 7 6 7 32 31 @

max. length of common-block names 6 31 7 6 7 32 31 @

type length modifiers:

INTEGER *1 +

INTEGER *2 + + + + + @ +

INTEGER *4 + + + + + + @ +

INTEGER *8 + @ +

REAL *4 + + + + + @ +

REAL *8 + + + + + + @ +

REAL *16 + + + + @

COMPLEX *8 + + + + + @ +

COMPLEX *16 + + + + + @ +

COMPLEX *32 + @

LOGICAL *1 + + + + +

LOGICAL *2 + + + @ +

LOGICAL *4 + + + + + @ +

LOGICAL *8 @ +

maximum length of type CHARACTER:

CHARACTER *255 +

CHARACTER *511 @ +

CHARACTER *16384 +

CHARACTER *32767 @ +

CHARACTER *65280

CHARACTER *65535 + +

CHARACTER *2147483647 +

default source file name extension FTN FOR F77 f f

default include file name extension FTN FOR

include list option delimiter / /

compiler directive string @ # $ #

free form continuation character -

free form 1st column comment char. "

lay-out:

1 lower case characters + + + + + + + +

2 debug lines (D) + + +

3 debug lines (A-Z)

4 tabs + + + +

5 formfeeds + + +

6 in-line comment after ! + + + + + +

7 cpp preprocessor directives

8 in-line comment after @ +

10 statement separator ; +

11 any character allowed as continuation character +

names:

13 names with $ + + + + + +

14 names with _ + + + + +

15 names beginning with $ +

16 built-in functions beginning with % + +

17 names with @

18 names beginning with _

A.3. TABLE WITH FORTRAN 77 LANGUAGE EXTENSIONS 83

no. SGI SUN HP9 DEC CD4 RM RM2 MS5 LH PF NDP FTN WAT AB F2C

132 132 80 132 132 80 80 80 80 80 @ 80 132 @

99 @ 99 19 19 @ @ @ @ 19 99 19 61 99 @

32 32 @ 31 32 31 31 31 31 31 31 32 32 31 @

32 32 @ 31 32 8 8 31 31 31 31 32 32 31 @

32 32 @ 31 32 8 8 31 31 31 31 32 32 31 @

+ + + + + + + + + + +

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + +

+

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + +

@ + + @

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+

+ + + + + + + + + + + + + + +

+ + + + + + + + + + +

+ + + + + + + + + + + + + + +

+ +

+ + + + + +

+ + + + +

+ +

f f f f f FOR FOR FOR FOR FOR f FOR FOR f

FOR FOR

$ # $ $ $ % $

- & &

" * ! !

1 + + + + + + + + + + + + + + +

2 + + + + + + + +

3 +

4 + + + + + + + + + + + + + +

5 + + + + + + + + + + +

6 + + + + + + + + + + + + +

7

8 +

10 +

11 +

13 + + + + + + + + + + + + +

14 + + + + + + + + + + + + + +

15 + + + +

16 + + + + +

17 +

18 + + + +

84 APPENDIX A. SUPPORTED FORTRAN SYNTAX

no. PDP VAX VS2 UNI CBR PR CF77 CVX

constants:

20 character constants between "" + +

21 REAL*16 with Q-exponent + + +

22 named constants in complex constants + + + +

23 Hollerith + + + + + + +

24 B’xxx’, B"xxx" binary

25 O’xxx’, O"xxx" octal + + +

26 X’xxx’, X"xxx" hexadecimal +

27 Z’xxx’, Z"xxx" hexadecimal + + +

28 ’xxx’B, "xxx"B binary

29 ’xxx’O, "xxx"O octal + + +

30 ’xxx’X, "xxx"X hexadecimal + + +

31 ’xxx’Z, "xxx"Z hexadecimal

32 Oxxx octal o o +

33 Zxxx hexadecimal o o +

34 xxxB octal +

35 [-]:xxx hexadecimal +

36 "xxx octal + + +

37 $ xxx hexadecimal

38 [radix]#value

39 radix 50 + +

40 C-string: ’xxx’C∗

41 Length modifier suffix (B,S,L)

42 C-string: \ editing∗

specification statements:

43 ALLOCATABLE

44 STATIC

45 [DE]ALLOCATE, deferred dim.spec.

46 AUTOMATIC

47 BOOLEAN +

48 BYTE + + +

49 C EXTERNAL

50 DOUBLE COMPLEX

51 IMPLICIT NONE + + + + +

52 IMPLICIT UNDEFINED

53 IMPLICIT AUTOMATIC/STATIC

54 OPTIONAL, INTENT

55 integer (Cray) POINTER +

56 LC, BC, HC, MS, MSC EXTERNAL

57 NAMELIST + + + + + +

58 F90 extended NAMELIST features

59 STRUCTURE, RECORD + +

60 F90 derived type

61 VIRTUAL + o

62 VOLATILE +

63 F90 POINTER, TARGET

64 DEFINE +

65 automatic arrays +

66 DLL_IMPORT, DLL_EXPORT

67 C_EXTERNAL, Salford STDCALL

68 specif. functions in specif. expressions

69 [..] type attributes

70 /../ init. of var. in type spec.stmnt. + + + + +

107 F90 init. of var. in type spec.stmnt.

71 length modifier after dimension

72 PARAMETER symbol=constant + + + + +

∗If extensions 40 and 42 are both enabled backslash editing is only applied for ’xxx’C-strings.

A.3. TABLE WITH FORTRAN 77 LANGUAGE EXTENSIONS 85

no. SGI SUN HP9 DEC CD4 RM RM2 MS5 LH PF NDP FTN WAT AB F2C

20 + + + + + + + + + +

21 +

22 + + + +

23 + + + + + + + + + + + + + + +

24 + + + + + + + +

25 + + + + + + + + +

26 + + + + +

27 + + + + + + + + + + +

28 + + + +

29 + + + + + + +

30 + + + + + + +

31 + + + +

32 +

33 +

34 +

35

36

37 + + +

38 + +

39 +

40 + +

41 +

42 + @ + + + @ +

43 + +

44 + + + + + + +

45 + + + +

46 + + + + + + + +

47

48 + + + + + + + +

49 + +

50 + + + + + + + + + + +

51 + + + + + + + + + + + + + +

52 + + + + +

53 + + + +

54

55 + + + + +

56 +

57 + + + + + + + + + + + + + +

58

59 + + + + + + + + +

60

61 o o o o o o

62 + + + + + +

63

64

65 +

66

67 +

68

69 +

70 + + + + + + + + + + + +

107

71 o

72 + + + + + +

86 APPENDIX A. SUPPORTED FORTRAN SYNTAX

no. PDP VAX VS2 UNI CBR PR CF77 CVX

73 /../ initialization of structure components + +

74 intrinsic functions in PARAMETER + + +

75 intrinsic functions in dimension spec. + +

76 DATA statements mixed with spec. stmnts. o o o o o

77 IMPLICIT mixed with specification stmnts. o

78 F90 KIND and Character selectors

79 F90 attributes and entity oriented decl.

80 F90 specification expressions

81 Record fields and records in DATA

82 Subobject of constant in DATA

83 intrinsic functions in DATA

84 pointers can be initialized in a DATA stmnt

subprograms:

215 INTERFACE TO

216 RECURSIVE +

217 MODULE

220 argument list in PROGRAM statement +

221 [type[*len]] FUNCTION name + + + +

222 [type] FUNCTION name [*len] o o + + + o

223 F90 interface block

224 F90 internal subprograms

225 Unisys internal subprograms +

226 array valued functions

227 END INTERFACE name

228 STDCALL∗

229 recursive subprograms o

commons:

85 initialization of blank COMMON o o o o o

86 differing lengths for a named COMMON o o o o o

87 initialization of COMMON not in BLOCK DATA o o o o o o

88 mixing of numeric and character in COMMON o o o o o

executable statements:

93 WHERE

94 FORALL

95 EXIT, CYCLE

96 DO [label] [WHILE] .. ENDDO + + + @ +

97 SELECT CASE

98 debug packet statements + +

100 named constructs

101 Watcom constructs

102 REMOTE BLOCK, EXECUTE

general syntax:

109 [...] array constructor

110 .XOR. exclusive or as .NEQV. o o o o o o

111 alternate relational operators <, ==, etc. +

112 alternate return label &label o o

113 alternate return label $label o

114 RETURN in main as STOP o

115 null-arguments + +

∗When extension 67 is enabled, the Salford variant of STDCALL is accepted.

A.3. TABLE WITH FORTRAN 77 LANGUAGE EXTENSIONS 87

no. SGI SUN HP9 DEC CD4 RM RM2 MS5 LH PF NDP FTN WAT AB F2C

73 + + + + +

74 + + + + + + +

75

76 o o o o o

77

78 +

79

80

81 +

82

83

84

215 +

216 +

217

220 + @

221 + + + + + + + + + + + + +

222 o o o o + o o

223

224

225

226

227

228

229 + + + + +

85 o o o o o

86 o o o o o

87 o o o o o o o

88 o o o o o o o o o o o o o o

93

94

95 + + + + +

96 + + + + + + + + + + + +

97 + + + + +

98 +

100 + +

101 +

102 +

109

110 o o o o o o o o o

111 + + + +

112 o o o o o o

113 o

114 o o o o

115 + + +

88 APPENDIX A. SUPPORTED FORTRAN SYNTAX

no. PDP VAX VS2 UNI CBR PR CF77 CVX

116 array expressions, but no dummy or alloc.

117 F90 array expressions and sections +

118 constant arrays,constructors and substr.

119 END program unit [name]

120 keyword actual arguments

121 zero sized data objects

type checking:

125 mixing of DP and COMPLEX in expressions + + + + + + +

126 string argument compatible with Hollerith o o o o

127 strings can be assigned to INT/REAL/LOG o o

128 strings can be ass. to BYTE and LOGICAL*1 o o

129 boz constants can be used in expressions + + + + +

130 boz constants in PARAMETER statement + +

131 equivalence of numeric and character o o o o o o

132 real array indices and substring expressions o o o o

133 i and l const. comp. with shorter dummy + +

I/O statements:

140 ACCEPT, TYPE + + +

141 INPUT

142 ENCODE, DECODE o o o o

143 FIND, DEFINE FILE o o

144 direct access (lun’record) o o o

145 READ, PRINT, INPUT without format

146 READ(KEY=) REWRITE, DELETE + +

147 LOCKING

148 UNLOCK +

I/O:

155 NUM= in READ +

156 list directed on internal file + + +

157 F90 nonadvancing I/O

158 Formatted derived type I/O

OPEN/CLOSE/INQUIRE specifiers:

165 RECL= for sequential files + + + + + +

166 RECL= not required if STATUS=’OLD + + +

format specifiers and edit descriptors:

175 noncharacter array name allowed o o o o o o

176 variable length fields <...> + +

177 aEw.dDe double precision exponent +

178 aQw[.d] quadruple precision mantissa + +

179 aOw[.m] octal edit descriptor + + + + + +

180 aZw hex edit descriptor +

181 aZw[.m] hexadecimal edit descriptor + + + + + + +

182 aR[w] char edit descriptor o

183 \ edit descriptor

184 Q edit descriptor + + +

185 $ edit descriptor + + + +

186 aBw[.m] binary edit descriptor +

189 Zero field width in edit descriptor

compiler directives:

200 INCLUDE + + + + + + +

201 OPTIONS + +

203 OPTION [N]BREAK

204 EJECT + +

205 [NO]LIST +

206 COMPILER(... +

A.3. TABLE WITH FORTRAN 77 LANGUAGE EXTENSIONS 89

no. SGI SUN HP9 DEC CD4 RM RM2 MS5 LH PF NDP FTN WAT AB F2C

116 +

117 +

118

119

120

121

125 + + + + + + + + + + +

126 o o o o o o o

127 o o o o o o o

128 o o o o o

129 + + + + + + + +

130 + +

131 o o o o o o o o o o o o

132 o o o o o o

133 + o

140 + + + + + + +

141 +

142 o o o o o o o o

143 o o o o

144 o o

145 o

146 + + +

147 +

148 + + +

155

156 + + + + + + + + +

157

158

165 + + + + +

166 + +

175 o o o o o o o o

176 + + + + +

177 + +

178

179 + + + + + + + + + + +

180 + + + +

181 + + + + + + + + + + +

182 +

183 + + + + + + +

184 + + + + + + + +

185 + + + + + + + + + + + +

186 + + +

189

200 + + + + + + + + + + + + + + +

201 + + + + + +

203 +

204 +

205

206

90 APPENDIX A. SUPPORTED FORTRAN SYNTAX

A.4. TABLE WITH FORTRAN 90/95/2003/2008 LANGUAGE EXTENSIONS 91

A.4 Table with Fortran 90/95/2003/2008 language extensions

92 APPENDIX A. SUPPORTED FORTRAN SYNTAX

no. F2003 F2008 Cray NAG XLF DEC FTN95 LF95 MSF

maxima in lay-out:

max. number of characters per line 132 132 132 132 132 132 132 132 132

max. number of cont. lines (fixed) 255 255 @ 255 255 99 19 19 99

max. number of cont. lines (free) 255 255 @ 255 255 99 39 39 99

max. length of names 63 63 63 250 31 63 240 31

max. length of subprogram names 63 63 63 250 31 63 240 31

max. length of common-block names 63 63 63 250 31 63 240 31

type length modifiers:

INTEGER *1 + + + + + + +

INTEGER *2 + + + + + + +

INTEGER *4 + + + + + + +

INTEGER *8 + + + + + +

REAL *4 + + + + + + +

REAL *8 + + + + + + +

REAL *10 +

REAL *16 + + + + + +

COMPLEX *8 + + + + + + +

COMPLEX *16 + + + + + + +

COMPLEX *20 +

COMPLEX *32 + + + + +

LOGICAL *1 + + + + + + +

LOGICAL *2 + + + + + + +

LOGICAL *4 + + + + + + +

LOGICAL *8 + + + + +

maximum length of type CHARACTER:

CHARACTER *255

CHARACTER *511 @

CHARACTER *16384

CHARACTER *32767 + @ + +

CHARACTER *65280 +

CHARACTER *65535

CHARACTER *2147483647 + +

default source file name extension f f FOR

default include file name extension

include list option delimiter

compiler directive string $

free form continuation character

free form 1st column comment char.

lay-out:

2 debug lines (D) + +

3 debug lines (A-Z) +

4 tabs + + + + + + +

5 formfeeds + + +

7 cpp preprocessor directives + +

8 in-line comment after @

9 in-line comment {...}

11 any character allowed as continuation character +

12 line may start with ; +

names: +

13 names with $ + + + + +

15 names beginning with $ + +

16 built-in functions beginning with % + + + +

17 names with @ + +

18 names beginning with _ + +

A.4. TABLE WITH FORTRAN 90/95/2003/2008 LANGUAGE EXTENSIONS 93

no. FUJ SG95 SF95 HP95 INT CVF AB95 gfort g95 PATH PGI

255 132 132 254 132 132 132 132 132 132 132

@ 99 99 255 511 511 99 @ @ 255 @

@ 99 99 255 511 511 99 @ @ 255 @

31 32 31 255 255 63 31 63 31

31 32 31 255 255 63 31 63 31

31 32 31 255 255 63 31 63 31

+ + + + + + + + + + +

+ + + + + + + + + + +

+ + + + + + + + + + +

+ + + + + + + + +

+ + + + + + + + + + +

+ + + + + + + + + + +

+ + + + +

+ + + +

+ + + + + + + + + + +

+ + + + + + + + + + +

+ + + + +

+ + +

+ + + + + + + + + + +

+ + + + + + + + + + +

+ + + + + + + + + + +

+ + + + + + + +

+ + + + +

+

+ + + + +

f f f f f f f f

$!DIR$ $ $ # # # #

-

"

2 + + + + + +

3

4 + + + + + + + + + + +

5 + + + + + + + + +

7 + + + + +

8

9

11 + +

12 + +

13 + + + + + + + +

15 + + + +

16 + + + + + + + +

17

18

94 APPENDIX A. SUPPORTED FORTRAN SYNTAX

no. F2003 F2008 Cray NAG XLF DEC FTN95 LF95 MSF

constants:

21 REAL*16 with Q-exponent +

22 named constants in complex constants + + + + + + + +

23 Hollerith + + + +

26 X’xxx’, X"xxx" hex + + +

28 ’xxx’B, "xxx"B binary + +

29 ’xxx’O, "xxx"O octal + + +

30 ’xxx’X, "xxx"X hex + + +

31 ’xxx’Z, "xxx"Z hex + +

32 Oxxx octal

33 Zxxx hex +

34 xxxB octal +

35 [-]:xxx hex

36 "xxx octal

37 $ xxx hex

38 [radix]#value +

39 radix 50

40 C-string: ’xxx’C∗ +

41 Length modifier suffix (B,S,I)

42 C-string: \ editing∗ + +

specification statements:

44 STATIC + + +

46 AUTOMATIC + + +

47 BOOLEAN

48 BYTE + + + +

49 C EXTERNAL

50 DOUBLE COMPLEX + + + + + + +

52 IMPLICIT UNDEFINED +

53 IMPLICIT AUTOMATIC/STATIC +

55 integer (Cray) POINTER + + + +

56 LC, BC, HC, MS, MSC EXTERNAL

59 STRUCTURE, RECORD + +

61 VIRTUAL o o

62 VOLATILE + + + + + + +

64 DEFINE

66 DLL_IMPORT, DLL_EXPORT +

67 C_EXTERNAL, Salford STDCALL +

68 specif.functions in specif.expressions + +

69 [..] type attributes

70 init. of var. in type spec.stmnt /../ + + + +

71 length modifier after dimension

72 PARAMETER symbol=constant +

73 /../ initialization of structure components +

108 F95 initialization of structure components + + + + + +

77 IMPLICIT mixed with specification stmnts.

81 Record fields and records in DATA

82 Subobjects of constants in DATA + + +

83 intrinsic functions in DATA + + +

84 pointers can be initialized in a DATA stmnt. + + +

231 procedure pointers + + + + +

239 PROTECTED + + + + +

240 C-binding and enumerators + + + + +

241 VALUE + + + + +

242 VALUE for arrays +

∗Extensions 40 and 42 are mutually dependent. If both are enabled backslash editing is only applied for ’xxx’C-

string

A.4. TABLE WITH FORTRAN 90/95/2003/2008 LANGUAGE EXTENSIONS 95

no. FUJ SG95 SF95 HP95 INT CVF AB95 gfort g95 PATH PGI

21 + + + + +

22 + + + + +

23 + + + + + + + + + + +

26 + + + +

28 + +

29 + + + + +

30 + + + + + +

31 + +

32

33

34 +

35

36

37

38 + +

39

40 o + + +

41

42 + o + + + + + +

44 + + + +

46 + + + +

47

48 + + + + + +

49

50 + + + + + + +

52

53 +

55 + + + + + + + + +

56 +

59 + + + + +

61 o o

62 + + + + + + + +

64

66

67

68 + + + + + + + + + +

69

70 + + + + + +

71 +

72 + + +

73 + + + +

108 + + + + + + +

77 +

81

82 + + + + + + + + + +

83 + + + + + + + + + +

84 + + + + + + + + + +

231 + + + +

239 + + +

240 + + + + + +

241 + + + +

242

96 APPENDIX A. SUPPORTED FORTRAN SYNTAX

no. F2003 F2008 Cray NAG XLF DEC FTN95 LF95 MSF

243 type parameter enquiry + + + + +

244 TS 29113, further interop of Fortran with C + + + + +

245 allocatable structure components (TR 15581) + + + + +

247 access spec. of components + + + + +

249 procedure components + + + + +

250 type bound procedures + + + + +

251 IMPORT statement + + + + +

252 pointer INTENT attribute + + + + +

257 renaming of operators in USE statement + + + + +

259 allocatable scalars + + + + +

260 deferred character length + + + + +

261 F2003 specification and initialization expressions + + + + +

262 PROCEDURE + + + + +

263 mixing of subroutines and functions in generic

264 allocatable dummy arguments (TR 15581) + + + + +

265 CONTIGUOUS attribute +

266 implied-shape array +

267 initialization of pointer with target +

268 maximum rank 15 +

269 :: after PROCEDURE allowed +

270 type extension + + + + +

271 parameterized derived type + + + + +

272 deferred binding and abstract type + + + + +

273 polymorphic entities, CLASS statement + + + + +

274 TYPE statement for intrinsic type +

275 empty type-bound-procedure-part +

276 list of type-bound-procedures +

277 omitting an all. component in a structure con-

structor

+

program units, subprograms, interfaces:

214 IMPURE +

215 INTERFACE TO +

218 PURE + +

219 ELEMENTAL + +

220 argument list in PROGRAM statement

221 [type[*len]] FUNCTION name + + + +

222 [type] FUNCTION name [*len] o o

225 Unisys internal subprograms

227 END INTERFACE name + +

228 STDCALL

229 recursive reference of all procedures allowed

230 intrinsic modules: USE, [NON_]INTRINSIC :: + + + + +

232 SUBMODULE +

233 ABSTRACT INTERFACE + + + + +

234 Data in main or module are saved implicitly +

235 allocatable function result (TR 15581) + + + + +

236 defining interface of containing procedure + + + + +

237 empty contains section + +

238 END statement for internal and module procedure +

commons:

85 initialization of blank COMMON o

86 differing lengths for a named COMMON + + o o o

87 initialization of COMMON not in BLOCK DATA o o

A.4. TABLE WITH FORTRAN 90/95/2003/2008 LANGUAGE EXTENSIONS 97

no. FUJ SG95 SF95 HP95 INT CVF AB95 gfort g95 PATH PGI

243 +

244 + +

245 + + + + +

247 + +

249 + +

250 + +

251 + + + + +

252 + + + +

257 + + +

259 + +

260 + +

261 + +

262 + +

263 + +

264 + + + +

265 +

266 +

267 +

268 +

269 + +

270 + +

271

272 + + +

273 + +

274 +

275

276 +

277

214 +

215 +

218 + + + + + + + + + +

219 + + + + + + + + + +

220

221 + + + + + + + + +

222 o +

225

227 + + + + + + + + + +

228 +

229

230 + + + + +

232

233 + +

234

235 + + + + +

236 + + + +

236 +

237 +

238 +

85

86 o

87 o

98 APPENDIX A. SUPPORTED FORTRAN SYNTAX

no. F2003 F2008 Cray NAG XLF DEC FTN95 LF95 MSF

executable statements:

94 FORALL + + + + +

98 debug packet statements

99 SELECT TYPE construct + + + +

101 Watcom constructs

102 REMOTE BLOCK, EXECUTE

105 ASSOCIATE + + + + +

106 ERRMSG= in (DE)ALLOCATE + + + + +

299 EXEC

300 bounds/remapping in pointer assignment + + + + +

301 transfering an allocation; typed allocation + + + + +

302 SOURCE= specifier on ALLOCATE + + + + +

303 MOLD= on ALLOCATE +

304 copy bounds and values from SOURCE and MOLD +

305 DO [label][,] [CONCURRENT] .. ENDDO +

306 FORALL index kind specification +

307 BLOCK construct +

308 EXIT any construct +

general syntax:

309 STOP and ERROR STOP with constant expression +

310 F2003 array constructor enhancements + + + + +

311 co-array +

312 real and imag part-ref +

320 internal procedure as actual argument +

321 unallocated actual argument allowed for optional

dummy

+ +

322 target actual arg. assoc. with dummy pointer +

323 reference of pointer function +

109 F2003 array constructor syntax: [..] + + + + + +

110 .XOR. exclusive or as .NEQV. o o o o

112 alternate return label &label o

113 alternate return label $label

114 RETURN in main as STOP o o

115 null-arguments +

124 F2003 structure constructors: comp. keywords + + + + +

type checking:

126 string argument compatible with Hollerith o o

127 strings can be assigned to INT/REAL/LOG o o

128 strings can be ass. to BYTE and LOGICAL*1 o

129 typeless (BOZ) can be used in expressions + + + + +

131 equivalence of numeric and character o o o o

132 real array indices and substring expressions o o o

133 i and l const. comp. with shorter dummy +

134 passing character scalar actual to dummy array + + + + +

135 BOZ constants in CMPLX, DBLE, INT, REAL + + + + +

136 intrinsic assignment of characters of different

kinds

+ +

A.4. TABLE WITH FORTRAN 90/95/2003/2008 LANGUAGE EXTENSIONS 99

no. FUJ SG95 SF95 HP95 INT CVF AB95 gfort g95 PATH PGI

94 + + + + + + + + + + +

98

99 + +

101

102

105 + +

106 + +

299

300 + +

301 + +

302 + +

303 +

304

305 +

306

307 +

308 +

309 +

310 + + +

311 +

312

320 + +

321 +

322

323

109 + + + + +

110 o o o

112 o

113

114

115

124 + + +

126

127

128

129 + + + + + +

131 o o o

132

133 +

134

135 + + + +

136 +

100 APPENDIX A. SUPPORTED FORTRAN SYNTAX

no. F2003 F2008 Cray NAG XLF DEC FTN95 LF95 MSF

I/O statements:

140 ACCEPT, TYPE statement +

141 INPUT statement

142 ENCODE, DECODE statement o o

143 FIND, DEFINE FILE statement o

144 direct access (lun’record)

145 READ, PRINT, INPUT without format

146 READ(KEY=) REWRITE, DELETE +

147 LOCKING statement

148 UNLOCK statement +

149 FLUSH statement + + + + +

155 NUM= in READ +

156 list directed on internal file + +

157 non-advancing i/o + +

158 formatted derived type i/o + +

159 asynchronous i/o + + + + +

160 stream access i/o + + + + +

161 temporary i/o mode + + + + +

162 IOMSG= specifier in all i/o statements + + + + +

163 namelist i/o on internal file + + + + +

164 recursive i/o + + + + +

OPEN/CLOSE/INQUIRE specifiers:

165 RECL= for sequential files + + +

166 RECL= not required if STATUS=’OLD

format specifiers and edit descriptors:

175 noncharacter array name allowed o o o

176 variable length fields <...> + + +

177 aEw.dDe double precision exponent +

178 aQw[.d] quadruple precision mantissa +

182 aR[w] char edit descriptor +

183 \ edit descriptor +

184 Q edit descriptor + + + +

185 $ edit descriptor + + + + +

189 zero field width in edit descriptors + +

190 derived type (DT) edit descriptor + + + + +

191 RU .. round edit descriptors + + + + +

192 DC, DP decimal edit descriptors + + + + +

193 comma after P optiona, if followed by repeat + + + + +

194 g0 edit descriptor +

195 unlimited repeat of format list +

compiler directives:

201 OPTIONS statement +

203 OPTION BREAK statement

204 EJECT statement +

205 [NO]LIST compiler directive +

206 COMPILER(...

A.4. TABLE WITH FORTRAN 90/95/2003/2008 LANGUAGE EXTENSIONS 101

no. FUJ SG95 SF95 HP95 INT CVF AB95 gfort g95 PATH PGI

140 + + + + +

141

142 o o o

143 o o

144 o

145

146 + +

147

148 + +

149 + + + +

155 +

156 +

157 +

158

159 + + +

160 + + +

161 + + +

162 + + + +

163 + +

164 + + + +

165

166

175 o

176 + +

177 + +

178 + +

182 + +

183 + + +

184 + + + + +

185 + + + + + + + +

189 + + + + + + + + + +

190

191 + + +

192 + + + +

193 + + + + +

194 +

195 +

201 + + + +

203

204

205

206

102 APPENDIX A. SUPPORTED FORTRAN SYNTAX

A.5. ABSOFT FORTRAN 77 EXTENSIONS 103

In the following sections some of the extensions are elucidated and the limitations of the FOR-

CHECK implementation of these extensions described.

A.5 Absoft Fortran 77 extensions

• FORCHECK folds all input to uppercase. The Absoft compiler supports folding to upper-

case, to lowercase or treat input case sensitive.

• Absoft has compiler options to specify the kind of free form source code. FORCHECK also

supports various kinds of free form input but you have to specify this in the configuration

file. Default is the Fortran 90 format.

• Absoft has a compiler option to support C-string backslash editing. For FORCHECK you

have to enable extension 42 in the configuration file.

• Absoft has compiler options to support conditional compilation lines beginning with ’D’,

’d’, ’X’, or ’x’. In the supplied configuration file for FORCHECK only conditional lines

beginning with ’D’, or ’d’ are enabled. To accept also lines beginning with ’X’, or ’x’ you

must enable extension 3 in the configuration file which, however, accepts conditional lines

beginning with any letter.

• FORCHECK supports DO WHILE .. ENDDO, but not WHILE .. ENDDO.

• FORCHECK does not support the following keywords: GLOBAL, INLINE, VALUE, GLOBAL

DEFINE, REPEAT.

A.6 Apollo/Domain Fortran extensions

• The Apollo/Domain compiler can read source records up to 1023 characters in free-form

mode, FORCHECK reads a maximum of 256 characters only.

• The number of continuation lines is unlimited for the Apollo/Domain compiler, FOR-

CHECK can read a maximum of 999 continuation lines only.

• The Apollo/Domain SR10 Fortran compiler accept names up to 4096 significant charac-

ters, FORCHECK considers only the first 64 characters as significant.

• The Apollo/Domain compiler accepts by default in-line comment between curly brack-

ets ({ }). FORCHECK no longer supports this form of comment. For the Apollo/Domain

compiler you can specify the in-line comment character using the -inline option. In FOR-

CHECK you can enable the exclamation mark as the start of in-line comment by enabling

extension 6 in the configuration file.

• Apollo Domain Fortran supports C-string backslash editing when the -uc compiler option

has been enabled. FORCHECK supports backslash editing if extension 42 has been enabled

in the configuration file.

• The INCLUDE line and the compiler directives %include, %eject, %list, %nolist are

supported.

104 APPENDIX A. SUPPORTED FORTRAN SYNTAX

• Conditional source input lines can be specified starting with "D", or "Debug".

A.7 Compaq Fortran extensions

Compaq Visiual Fortran, formaly Digital Visual Fortran, supports most DEC Fortran and Mi-

crosoft Fortran Powerstation Fortran extensions.

• The compiler directive OPTIONS will be recognized but the specified qualifiers will have

no effect.

• cpp preprocessing is supported with limitations.

• The keyword VIRTUAL is supported but the limitations in usage will not be checked.

• DEC FORTRAN 4+ synonyms for Fortran 77 keywords in OPEN and CLOSE are supported,

but are flagged.

• Type attributes are skipped, except for ALLOCATABLE, which is processed to allow for

allocatable arrays. The limitations and consistency in usage of the attributes are not

verified.

A.8 Control Data 4000 Fortran extensions

• The Control Data 4000 Fortran compiler accepts the extended precision REAL*16 type

specification. These data will occupy 16 bytes, but will be interpreted as double precision

(REAL*8).

A.9 Convex Fortran extensions

• The VAX-FORTRAN extensions are enabled by default (Convex Fortran -vfc option). To

disable these options, or enable the Sun Fortran extensions, adapt the configuration file.

• The INCLUDE line and the #include preprocessor directive are supported.

• The OPTIONS directive is accepted, but the options specified will have no effect.

• The C$DIR compiler directive is treated as comment.

• Though Convex Fortran accepts names up to 42 characters FORCHECK considers only the

first 32 characters as significant.

A.10 Cray Fortran 77 extensions

• The Cray Fortran 77 compiler accepts type specifications with length modifiers but inter-

prets INTEGER*2, *4, *8 as 64 bit integers, LOGICAL*2, *4, *8 as 64 bit logicals, REAL*4,

*8 as 64 bit reals. They occupy a full 64 bit word. REAL*16, COMPLEX*8 and COMPLEX*16

data occupy two words (128 bits).

A.11. CYBER NOS/VE FORTRAN EXTENSIONS 105

• The CDIR$ directives are treated as comment and have no effect.

• Though Fortran 90 and FORCHECK do, Cray Fortran 77 does not allow an ENDDO statement

to be labeled.

• Cray Fortran 77 allows recursion in subprograms either by using the prefix RECURSIVE

in the subprogram header or by specifying the recursive option in the command line

when compiling. In FORCHECK the RECURSIVE prefix is accepted for Cray Fortran 77

(extension 216). Recursive reference without the RECURSIVE prefix can be enabled by

specifying extension 229 in the configuration file.

A.11 Cyber NOS/VE Fortran extensions

• The compiler directives are treated as comment. You can use the NOS/VE source code

utility to prepare the source code to be analyzed by FORCHECK.

A.12 DEC PDP-11 Fortran-77 extensions

• DEC PDP-11 Fortran-77 does not support the full language, but an extended subset. FOR-

CHECK does not signal the usage of unsupported full language Fortran 77 features, but

optionally signals extensions to the full standard.

• The keyword VIRTUAL is supported but the limitations in usage will not be checked.

• DEC FORTRAN 4+ synonyms for Fortran 77 keywords in OPEN and CLOSE are supported,

but are flagged.

A.13 DEC FORTRAN and VAX Fortran extensions

• VAX Fortran accepts more than 19 continuation lines as long as the records fit in the

statement buffer. Only when the statement buffer becomes full you have to specify the

/CONTINUATIONS qualifier. FORCHECK accepts a maximum of 999 continuation lines for

the VAX Fortran emulation. You can specify the /CONTINUATIONS qualifier to change this

number, or use the /F77 qualifier to allow 19 continuation lines only.

• The compiler directive OPTIONS will be recognized but the specified qualifiers will have

no effect.

• The keyword VIRTUAL is supported but the limitations in usage will not be checked.

• DEC FORTRAN 4+ synonyms for Fortran 77 keywords in OPEN and CLOSE are supported,

but are flagged.

A.14 Digital Research Fortran-77 extensions

• The %INCLUDE compiler directive is supported.

106 APPENDIX A. SUPPORTED FORTRAN SYNTAX

A.15 F2c Fortran 77 extensions

• The tab is supported but does not imply the analysis of characters beyond column 72.

• By default f2c Fortran supports C-string backslash editing. This can be disabled using

the compiler option -!bs. FORCHECK supports backslash editing if extension 42 has

been enabled in the configuration file, which is the default for the f2c Fortran 77 compiler

emulation.

A.16 GNU Fortran 77 extensions

The GNU Fortran 77 compiler has many options to enable or disable certain language exten-

sions. The configuration file supplied should therefore be considered as a skeleton. You can

easily adapt this configuration file to your needs when using certain optional extensions, when

migrating to Fortran 90. The compiler is now succeeded by gfortran.

• cpp preprocessing is supported with limitations.

• The tab is supported but does not imply the analysis of characters beyond column 72.

• The length of symbolic names is unlimited in GNU Fortran 77. Forcheck considers only

the first 64 characters as significant.

• By default GNU Fortran supports C-string backslash editing. This can be disabled using the

compiler option -!bs. FORCHECK supports backslash editing if extension 42 has been

enabled in the configuration file, which is the default for the GNU Fortran 77 compiler

emulation.

• GNU Fortran accepts a statement label after a statement separator (;). FORCHECK does

not support this feature.

• GNU Fortran accepts continuation lines of INCLUDE directives and more than one INCLUDE

directive can be placed on a single line using statement separators (;). FORCHECK does

not support these extensions.

A.17 HP-UX FORTRAN/9000 and HP Fortran 77 extensions

There are minor differences between the HP-UX FORTRAN/9000 compiler of the HP 9000/300

and 9000/700 series and the HP Fortran 77 compiler of the HP 9000/800 series.

• Though the HP Fortran compilers accept names up to 255 significant characters, FOR-

CHECK considers only the first 64 characters as significant.

• HP compilers interpret a ! as end of line comment when in column 1 or in column 7 to

72. FORCHECK interprets a ! in all columns but column 6 as end of line comment (as in

Fortran 90). In FORCHECK the ˆL character is always processed as a formfeed. In HP-UX

FORTRAN/9000 ˆL is only accepted when found in column 1 of an input record.

• The INCLUDE line and the $include compiler directive are both supported.

A.18. IBM AIX XL FORTRAN EXTENSIONS 107

• All compiler directives are accepted. Some of them are processed and have the expected

effect, such as $LIST, $PAGE, $ANSI. Others have no effect on the Forcheck analysis, such

as $ALIAS, $INLINE etc.

• cpp preprocessing is supported with limitations.

A.18 IBM AIX XL FORTRAN extensions

• The XL Fortran compiler has no limit on the length of source records in free-form mode,

Forcheck only reads a maximum of 256 characters.

• Though the XL compiler accepts tabs, a tab before a continuation character is not sup-

ported. FORCHECK accepts a tab before a continuation character.

• The XL Fortran Fortran compiler accepts names up to 250 significant characters, FOR-

CHECK considers only the first 64 characters as significant.

• By default in FORCHECK the maximum length for type character is set to 32767 for the

XL compiler emulation. The default for the XL Fortran Fortran compiler, however, is 500.

A larger length for type character for the XL Fortran compiler is allowed by specifying

the CHARLEN(len) compiler option or the qcharlen=num command line flag. You also

can adapt the FORCHECK configuration file used to have FORCHECK flag the usage of

character lengths larger than 500.

• The free form source syntax is not fully supported. A continuation character in front of

the on-line comment character (!) is not always detected.

• cpp preprocessing is supported with limitations.

• The PROCESS directive will be accepted, but the compiler options specified have no effect.

• The INCLUDE line is supported, but not conditional.

A.19 IBM VS Fortran V2 extensions

• In FORCHECK the maximum length for type character is set by default to 32767 for the

VS Fortran emulation. The default for the VS Fortran compiler, however, is 500. A larger

length for type character for the VS Fortran compiler is allowed when specifying the

CHARLEN(len) compiler option. You also can adapt the FORCHECK configuration file used

to have FORCHECK flag the usage of character lengths larger than 500.

• The free form source syntax is not fully supported. A continuation character in front of

the on-line comment character (!) is not always detected.

• The PROCESS directive will be accepted, but the compiler options specified have no effect.

• The INCLUDE line is supported, but not conditional.

108 APPENDIX A. SUPPORTED FORTRAN SYNTAX

• DEBUG packets are supported, but with restrictions. Within debug packets all variables

are supposed to have the implicit type, and no array-element references are allowed.

Moreover, invalid transfer of control from and into debug packets will not be signaled.

• Asynchronous I/O and double byte characters are not supported.

A.20 Intel Fortran extensions

• cpp preprocessing is supported with limitations (fpp).

• The compiler directive OPTIONS will be recognized but the specified options will have no

effect.

• The keyword VIRTUAL is supported but the limitations in usage will not be checked.

• DEC FORTRAN 4+ synonyms for Fortran 77 keywords in OPEN and CLOSE are supported,

but are flagged.

• Type attributes are skipped, except for ALLOCATABLE, which is processed to allow for

allocatable arrays. The limitations and consistency in usage of the attributes are not

verified.

A.21 Lahey F77L Fortran-77 extensions

• The number of continuation lines is unlimited for the Lahey compilers. FORCHECK can

read a maximum of 999 continuation lines.

A.22 Microsoft Fortran extensions

The syntax extensions listed apply for both Microsoft Fortran V5.1 and Microsoft Fortran Pow-

erStation V1.0

• The compiler directives are supported.

• Type attributes are skipped, except for ALLOCATABLE, which is processed to allow for

allocatable arrays. The limitations and consistency in usage of the attributes are not

verified.

• Array expressions are supported, but user supplied functions cannot produce an array

result.

Most extensions of Microsoft Fortran PowerStation V4.0 are supported. However, only

simple logical expressions (name oper const) in the if and elsif directives are supported.

A.23. NDP FORTRAN EXTENSIONS 109

A.23 NDP Fortran extensions

• The NDP compiler can read source records up to 132 characters in fixed-form mode and

13200 in free-form mode, FORCHECK only reads a maximum of 256 characters.

• NDP Fortran supports C-string backslash editing if the compiler option -f6 is specified.

FORCHECK can support backslash editing by enabling extension number 42 in the con-

figuration file.

A.24 Prime Fortran-77 extensions

• In-line comment between /* and */ is not supported anymore.

• The maximum number of continuation lines allowed depends for Prime Fortran on how

many language elements each line contains. FORCHECK allows 19 continuation lines by

default.

• Both the INCLUDE line and the $INSERT directive are supported.

• The B-field edit descriptor is not supported.

• The SHORTCALL statement is not supported.

• The FULL LIST compiler directive is not supported.

A.25 Salford Fortran extensions

Most FTN77/386 extensions are supported but a number of the newer FTN extensions are not.

• Though the maximum number of continuation lines supported is 19 for fixed format and

39 for free format, the FTN compilers allow more continuation lines depending of the

length of the lines. FTN95 allows 19 in fixed format, 39 in free format and 99 in free

format in .NET configuration or if the Fortran 2003 switch /F03 has been specified.

• The compiler directive OPTIONS will be recognized but the specified qualifiers will have

no effect.

• Internal procedures are not supported.

• INTERRUPT SUBROUTINE, SPECIAL SUBROUTINE and SPECIAL ENTRY are not supported.

• Conditional compilation (CIF, CELSE, CENDIF) is not supported.

• The % prefix to denote an address in a DATA statement is not supported.

• Business editing is not supported.

110 APPENDIX A. SUPPORTED FORTRAN SYNTAX

A.26 Silicon Graphics MIPSpro Fortran 77 extensions

• cpp preprocessing is supported with limitations.

• The SGI Fortran 77 compiler accepts the extended precision REAL*16 type specification.

These data will occupy 16 bytes, but will be interpreted as double precision (REAL*8).

• By default the SGI Fortran 77 compiler supports C-string backslash editing. This can be

disabled using the compiler option -backslash. FORCHECK supports backslash editing

if extension 42 has been enabled in the configuration file, which is the default for the SGI

compiler emulation.

• SGI Fortran 77 supports recursive subprogram references when the -automatic compiler

option is specified during compilation. In FORCHECK extension 229 is enabled in the

compiler emulation file to allow for recursion.

A.27 Sun Fortran 77 extensions

• cpp preprocessing is supported with limitations.

• The tab is supported but does not imply the analysis of characters beyond column 72.

• The default maximum number of continuation lines for the Sun compiler is 19. This

maximum can be increased using the -Nln option. FORCHECK also allows a maximum

of 19 continuation lines by default. FORCHECKś maximum can be increased up to 999,

using the -cont n option.

• By default Sun Fortran supports C-string backslash editing. This can be disabled using

the compiler option -xl. FORCHECK supports backslash editing if extension 42 has been

enabled in the configuration file, which is the default for the SUN compiler emulation.

A.28 Unisys 1100 Fortran-77 extensions

• Records beginning with "#" or "@" are skipped.

• Though the number of continuation lines is unlimited for the Unisys Fortran compiler

FORCHECK can read a maximum of 999 continuation lines.

• DEBUG packets are supported with the restrictions as described for IBM VS Fortran.

A.29 Watcom Fortran 77 extensions

• The Watcom compiler interprets a ! as end of line comment in any column. FORCHECK

interprets a ! in column 6 as a continuation character (as in Fortran 90).

• FORCHECK does not support the Watcom *$include compiler directive.

A.30. CHANGING THE CONFIGURATION FILE 111

A.30 Changing the configuration file

The configuration file is composed of the following sections.

Sections of the configuration file

• GENERAL

• EXTENSIONS

• INTRINSICS

• OCI

• MESSAGES

• VARIOUS

The sections are identified by a header with the section name within brackets. In the folow-

ing sections each configuration file section is described. Lines beginning with "!" are treated

as comment. To enable a specific configuration file, see the section "The usage of language

extensions" of the chapter "Operation".

A.30.1 GENERAL

Mnemonic of the emulated compiler, Fortran conformance level

The first line specifies the lowest FORCHECK version number which can read this configuration

file. The next line "Mnemonic of the emulated compiler, Fortran conformance level" specifies

the following:

1. Mnemonic of the emulated compiler. This is a eight character string which will be pre-

sented at program startup and in the headers of the list file. It has no effect on the

analysis.

2. Fortran conformance level. This is a three character string and can be: "F77", "F90", "F95",

"F03", or "F08". All extensions are relative to the language level specified and all syntax

of this language level will be enabled.

Type information

The next subsection "Type information" specifies the types and kinds supported, and the limits

of the types.

1. Number of bits, difference between ABS(min) and max value of default integer.

2. Number of bits for an address as used for integer POINTER (extension 55).

3. Number of bits for the various integer types.

4. Number of significant binary digits of reals.

112 APPENDIX A. SUPPORTED FORTRAN SYNTAX

5. Decimal exponent range of reals.

6. Maximum exponent of reals.

7. Minimum exponent of reals.

8. Minimum real which is not zero.

9. The maximum length of character constants and variables.

10. Type mnemonics.

11. Default byte-lengths of the various types

12. Byte-lengths with short-length option enabled.

13. Byte-lengths with short-length option disabled.

14. Supported types

15. Supported types for generic procedures.

16. Table of available kinds and byte lengths (5 lines).

Miscellanious

The next subsection "Miscellanious" is composed of the following lines:

1. Default file name extensions: source, include. List-option delimiter for INCLUDE line.

2. Maximum number of continuation lines in fixed source form, and free source form, 0:

unlimited, so accept the maximum FORCHECK can handle.

3. Maximum length of identifiers: local names, entry names, common-block names, 0: un-

limited, so accept the maximum FORCHECK can handle.

4. Compiler directive strings. Two strings can be specified with a maximum length of 10

characters each. For cpp preprocessing one of these strings must be ’#’.

5. Free-form continuation characters. The first character specified is the character which in-

dicates the current line will be continued. Except in character context, if the last nonblank

character before a ! is this character, the line will be continued. The second character is

a character which can be used to indicate a continuation line.

6. First column free-form comment characters. Two characters can be specified which indi-

cate for free-form input a comment line when placed in the first column.

A.30.2 EXTENSIONS

In this section you can include the numbers of the syntax extensions you like to enable. Each

number must be specified on a single record, optionally followed by comment within apostro-

phes.

A.30. CHANGING THE CONFIGURATION FILE 113

A.30.3 INTRINSICS

FORCHECK recognizes all standard Fortran intrinsic procedures. Moreover the additional in-

trinsic procedures as specified in the configuration file will be recognized. You can modify

the configuration file and remove, add, or change the nonstandard intrinsic procedures to be

recognized. Not all specific names of each generic procedure are specified in the various con-

figuration files, because in general there is no need to use these names.

FORCHECKcan accept added intrinsic functions which are standardized in a higher Fortran

standard level than the Fortran conformance level as specified in this configuration file without

reporting. You can group the added intrinsic functions for each language level. Each group

must have one of the following headers:

!Fortran 90 additions

!Fortran 95 additions

!Fortran 2003 additions

!Fortran 2008 additions

The nonstandard compiler specific additions must be in a group with the following header:

!Nonstandard additions

If you specify e.g. Fortran 2003 conformance (/F03) only the intrinsic functions which

are not in the Fortran 2003 standard are reported.

In the next paragraphs we describe the way intrinsic procedures can be specified in the

configuration file. The properties of intrinsic procedures are very divers and hard to specify in

a general way, covering all implementations. Moreover the various Fortran language reference

manuals describe the intrinsic functions each in their own way from which it is often hard

to discover the system behind the generation of specific functions from generic functions.

Therefore it is not an easy task to specify additional intrinsic procedures in the configuration

file. However, if you follow the rules described below and use the configuration files supplied

as examples you will be able to fulfill the job.

In the record "allowed type lengths for generic procedures" of the configuration file you

can specify which argument type lengths will be accepted by a generic function to generate a

specific function. To allow the BYTE type as argument, specify it as INTEGER*1.

Each specific intrinsic procedure is specified by a header record and a record for each of

its arguments. The list of intrinsic procedures is delimited by a record with a zero.

The header record is composed of the following fields:

1. Generic procedure name, string.

If blank, the procedure is specific only. If non-blank, and if the procedure does not exist

already, it is added to the list of generic procedures.

2. Specific procedure name, string.

If the specific procedure name already exists, the specific procedure specified overrules

the existing one. Otherwise the specific procedure name is added to the list of specific

procedures.

If the generic procedure name is non-blank, the procedure is added to the chain of specific

procedures which can be generated from the generic procedure.

114 APPENDIX A. SUPPORTED FORTRAN SYNTAX

If the specific name is left blank the generic name is used as the specific name.

Specific procedures must have different names if they can be generated from a single

generic procedure and have different resulting types or type lengths.

If the intrinsic procedure is a subroutine, the procedure type must be specified as ’S’, the

type length and rank are not relevant and can be set to zero.

3. Procedure type, character.

’ ’ same as the type of the argument(s)

’?’ typeless

’C’ complex

’CH’ character

’I’ integer

’L’ logical

’R’ real

’X’ result of MATMUL

’S’ no function but subroutine

4. Procedure type kind/length, integer. Special codes:

>0 type length

0 same as the type kind/length of the argument(s)

-1 default type kind/length of the function type

-2 default type kind/length of type double precision

-3 same as the type kind of the argument(s); half the type length of the type length of

the arguments

-4 unknown

-5 type kind of an address (or integer POINTER)

5. Procedure rank and shape code, integer. Special codes:

0 scalar

1 rank 1

2 rank 2

-1 take shape of argument with largest rank

-2 rank N+1

-3 scalar or rank 1

-4 scalar or rank N-1

-5 rank 1 or N-1

-6 shape of second array argument

-7 follow the rules of matrix multiplication

In which N is the highest rank of all arguments.

6. Number of arguments, integer. Special codes:

0 any number of arguments allowed, none argument line must follow

-1 one or two arguments allowed, one argument line must follow

-2 two or more arguments allowed, one argument line must follow

A.30. CHANGING THE CONFIGURATION FILE 115

-3 one or none arguments allowed, three argument lines must follow

-4 two or three arguments allowed, two if first argument is complex; three argument

lines must follow

7. Procedure name allowed as actual argument, logical.

8. Intrinsic procedure class, string:

’A’ atomic subroutine

’E’ elemental function

’I’ inquiry function

’P’ procedure (can be referenced as function or subroutine)

’S’ subroutine

’T’ transformational function

9. Compile-time inquiry, or transformational function, logical.

10. Optional comment, string.

Each record for an argument is composed of the following fields:

1. Argument name, character.

2. Argument type, character.

’ ’ any type allowed (but all arguments must have the same type)

’?’ typeless

’C’ complex

’CH’ character

’I’ integer

’L’ logical

’N’ numeric: integer, real, complex

’R’ real

’T’ derived type

’U’ intrinsic type

’X’ any type allowed, don’t check

3. Argument type kind/length, integer.

>0 type length

0 any kind/length allowed which is allowed for the generic procedure

-1 default kind/length of the argument type

-2 double precision

4. Argument rank, integer. Special codes:

0 argument must be scalar

1 argument must be array of rank 1

2 argument must be array of rank 2

-1 array argument required

116 APPENDIX A. SUPPORTED FORTRAN SYNTAX

-2 argument can be scalar or array, even in Fortran 77

-3 argument can be scalar or array

-4 argument can be scalar or rank N-1

-5 argument can be rank 1 or 2

-6 argument must be a dummy argument

-7 argument must be the name of a variable or external procedure

-8 argument must be a pointer or pointer procedure

In which N is the highest rank of all arguments.

5. Argument must have the same type as the previous ones (if any), logical. If the resulting

type kind of the intrinsic procedure depends on the type kind of this argument, this flag

must be set true.

6. Argument is optional, logical.

7. Argument must be defined on entry, logical.

8. Argument will be defined, logical.

9. Optional comment, string.

A.30.4 OCI (OPEN/CLOSE/INQUIRE) specifiers

FORCHECK recognizes all standard Fortran specifiers. Moreover the additional specifiers as

specified in the configuration file will be recognized. You can modify the configuration file and

remove, add, or change the nonstandard specifiers to be recognized.

FORCHECKcan accept added specifiers which are standardized in a higher Fortran standard

level than the Fortran conformance level as specified in this configuration file without reporting.

You can group the added specifiers for each language level. Each group must have one of the

following headers:

!Fortran 90 additions

!Fortran 95 additions

!Fortran 2003 additions

!Fortran 2008 additions

The nonstandard compiler specific additions must be in a group with the following header:

!Nonstandard additions

If you specify e.g. Fortran 2003 conformance (/F03) only the specifiers which are not in

the Fortran 2003 standard are reported.

In the next paragraphs we describe the way specifiers can be specified in the configuration

file.

Each OPEN, CLOSE or INQUIRE keyword or combination of keyword and value must be

specified on a single record of the configuration file. The list is delimited by a record with a

zero. Each record has the following format:

1. Keyword, string.

A.30. CHANGING THE CONFIGURATION FILE 117

If a keyword starts with the characters of another keyword, the longest keyword has to be

specified first, or the "=" must be included in the name of the shortest keyword. Specify

a blank before the "=" to allow non-significant blanks between the keyword and the "=".

If a keyword may be split up in more than one part, separated by blanks (Fortran 90 free

form input), include a blank in the specification at these positions.

2. OPEN/CLOSE/INQUIRE indicator, character.

’O’ can be used in OPEN statement

’C’ can be used in CLOSE statement

’I’ can be used in INQUIRE statement

Specify additional records with the same keyword for each statement type in which the

keyword can be specified.

3. Value or value type, string.

This field can either denote a value keyword (character constant), or the type of a variable

value.

If a value can be a value keyword, specify a value keyword in the value type field. Each

keyword and value combination must be specified in a separate record. A value keyword

cannot be shorter than two characters. If it has a length of two characters, it cannot end

with an ’R’ or an ’A’. If a value keyword starts with the characters of another value keyword,

this value keyword has to be specified first. If a value keyword may be split up in more

than one part, separated by blanks, include a blank in the specification at these positions.

A specific value keyword can be specified for two different open keywords and one close

keyword.

If the value can be a variable, the first character of the value type field denotes the type

of the value.

’N’ no value expected

’ ’ any type allowed

’E’ external expected

’I’ integer datum expected

’K’ key description expected

’L’ label or logical expected

’C’ character

’U’ unit specifier expected

’V’ scalar-default-char-variable expected

The second character of the value type field denotes reference or assignment.

’R’ reference

’A’ assignment

For OPEN and CLOSE ’R’ is the default, for INQUIRE ’A’ is the default. Note that the

value type and reference/assignment character are to be specified in a single string field,

for example ’IA’ to denote an integer assignment.

118 APPENDIX A. SUPPORTED FORTRAN SYNTAX

4. Synonym keyword, string.

Here you can specify for which keyword the keyword is a synonym. If the keyword is no

synonym specify a blank string. If nonblank the value type field is not relevant. Synonyms

will be flagged as nonstandard.

5. Standard Fortran specifier, logical.

T The keyword is a standard Fortran specifier

F The keyword is no standard Fortran specifier

A.30.5 MESSAGES

In the section "messages" you can redefine messages. You specify the numbers of the messages

which you want to suppress or of which you want to change the severity. Each message number,

followed by the severity level flag within apostrophes, must be specified on a single record.

See the section "The usage of language extensions" of the chapter "Operation" for a precise

description. You also can specify suppress=’all’ to suppress all diagnostic messages.

A.30.6 OUTPUT

In this section you can specify what information is sent to stdout, is stored in the listing file

and in the report file. See the section "Tuning the output" of the chapter "Operations".

A.30.7 VARIOUS

In this section you can specify the count mode, the format of the message reporting and the

date/time format. See the corresponding sections of the chapter "Operations".

Appendix B

Limitations

FORCHECK is a static analyzer, therefore it cannot detect any errors which manifest themselves

at run time only. For example, a variable array index, or variable character substring expression

which is out of bounds, cannot be detected. Likewise, the detection of operations on external

files can hardly be checked without executing the program. For example a file which has not

been opened before usage, or a variable logical unit not being used consistently, cannot be

detected.

FORCHECK warns you, if possible, when a variable has not been defined in a program unit,

when a common-block object has not been defined in the program (use the complete program

(/CO) option to enable this feature), when an allocatable variable has never been allocated , or

when a pointer has never been associated to a target or procedure. However, if an object is

used as an input/output actual argument FORCHECK cannot verify this. In a limited number of

cases FORCHECK reports when an item has been referenced, before it was defined, allocated,

or associated. However the path flow analysis to detect this is limited. As soon as a labeled

executable statement has been encountered and either a forward reference to a label has been

made, or we are in a construct, FORCHECK cannot signal this kind of errors any more. So avoid

labels and goto’s. This is another good reason to use IF and SELECT CASE constructs as much

as possible! By specifying the rigorous syntax analysis (/RI) option FORCHECK will detect

more occurrences of "referenced before defined" at the cost of more false alarms

Arrays, character variables and variables of derived type are treated as a single entity. The

individual array elements, substring elements or structure components are not checked for

unreferenced, undefined, or not allocated. This is not only to reduce the storage and processing

time requirements, but also because most array and substring elements are referenced using

variable array indices or substring values which cannot be verified statically.

Recursive I/O attempts will only be detected in a limited number of cases. FORCHECK

does not compare the consistency of format strings with the actual I/O list. This is because

many I/O lists have implied DO loops which generate a variable number of elements. Future

versions of FORCHECK may check format strings as far as possible.

119

120 APPENDIX B. LIMITATIONS

B.1 Configuration determined limits

The tables used in FORCHECK to store all information have limited sizes. The sizes of all

internal tables will be specified in the following table.

These limits cannot be changed by the user. When a limit has been exceeded a system

message will be given. Analysis will proceed, but will no longer be complete.

value description

255 max. length of a file specification

255 max. length of an include filename

512 max. number of characters in an input record

512 max. number of characters in an output record

25 max. nesting of include files

100 max. nesting of modules

50 max. nesting of references in call-tree

200 max. number of library files

1000 max. number of (non-comment) lines in a statement

20000 max. number of characters in a statement

8000000 length of name table

20000 max. number of contexts in a program unit

100 max. nesting of structures + unions + maps

16 max. number of parameters of a derived type

10000 max. nesting of DO + IF + ELSEIF + ELSE + SELECTCASE + CASE

7 max. nesting of implied DO loops in DATA statement

30 max. nesting level in an expression

2000 max. number of objects being checked in an argument list, or equivalence list

4000 max. number of shape, bound, or vector values in an argument list, equivalence list,

or common-block list

16 max. number of derived-type parameters for a derived type

20000 length of argument key list

4000 max. number of objects in a common-block list, or data list

200000 max. number of entries in the symbol table

1000 max. number of references in a cross-reference table presented

1000000 max. total number of references in the cross-reference tables

1000 max. number of non-analyzed procedures presented

100 max. number of messages that can be redefined

25 max. number of common blocks specified with the show common (/SC:c) option

25 max. number of modules specified with the show public module derived types (/SMT:m) option

25 max. number of modules specified with the show public module data (/SMV:m) option

25 max. number of roots specified with the show reference structure (/SRS:r) option

25 max. number of roots specified with the show module dependencies (/SMD:m) option

20 max. number of program units specified with the include (/IL) option

50 max. number of include directories specified with the include path (/IP:p) option

500 max. maximum number of intrinsic procedures

100 max. maximum number of OPEN/CLOSE/INQUIRE keywords

100 max. maximum number of OPEN/CLOSE/INQUIRE value keywords

Appendix C

History of changes

See the supplied file history.txt for all relevant changes that have been made to FORCHECK

since the introduction of version 14.

121

122 APPENDIX C. HISTORY OF CHANGES

Appendix D

Message summary

In this appendix all system and analysis messages are listed. The messages which are not

self-explaining are elucidated.

1 I (MESSAGE LIMIT REACHED FOR THIS STATEMENT OR ARGUMENT LIST)

• FORCHECK displays only the first 5 messages in a statement or argument list.

2 E (OPEN ERROR ON INCLUDE FILE)

• FORCHECK cannot locate or open the include file.

3 E (INCLUDE NESTING TOO DEEP)

• The nesting of include files is larger than FORCHECK can handle.

4 O (NEXT SOURCE RECORD TOO LONG, REMAINDER NOT PROCESSED)

• The source input record is longer than FORCHECK can handle.

5 O (TOO MANY (COMMENT) RECORDS IN STATEMENT, REMAINDER NOT PROCESSED)

• The number of (comment) lines in the statement is longer than FORCHECK can han-

dle.

6 O (STATEMENT TOO LONG, REMAINDER NOT PROCESSED)

• The number of characters in the statement is larger than FORCHECK can handle.

7 O (TOO MANY STATEMENTS, REMAINDER NOT PROCESSED)

• The number of statements in the program unit is larger than FORCHECK can handle.

8 O (NAME TOO LONG, TRUNCATED)

• The identifier is longer than FORCHECK can handle.

9 O (ARRAY TOO LONG, LENGTH NOT VERIFIED)

123

124 APPENDIX D. MESSAGE SUMMARY

• The length of the array is longer than FORCHECK can handle.

10 O (CHARACTER ENTITY TOO LONG, LENGTH NOT VERIFIED)

• The character constant or type length is longer than FORCHECK can handle.

11 O (NUMBER CANNOT BE CONVERTED)

• The number concerned is too large for the system being used.

• The format of the number is not available on the system being used.

12 O (NAME TABLE FULL, REMAINDER NOT PROCESSED)

• The table with identifiers is full. When using many long names the name table can

become full before the symbol table is full.

13 O (SYMBOL TABLE FULL, REMAINDER NOT PROCESSED)

• The table with information concerning named entities is full.

14 O (CONTEXT TABLE FULL)

• The number of contexts is larger than FORCHECK can handle.

15 O (NESTING TOO DEEP)

• The nesting of array subscripts, function-, and subroutine argument lists is too deep.

• The nesting of implied DO loops in a DATA statement is too deep.

• The context nesting is too deep

16 O (EXPRESSION STACK OVERFLOW)

• The expression is to complex to analyze.

17 E (EXPRESSION STACK UNDERFLOW)

• Internal FORCHECK error, please report.

18 O (CONSTRUCT STACK OVERFLOW)

• The nesting of constructs, is too deep.

19 O (DERIVED-TYPE/STRUCTURE NESTING TOO DEEP)

• The stack for nesting of derived-types and structures is full.

20 O (TOO MANY OBJECTS IN DATA STATEMENT, REMAINDER NOT VERIFIED)

21 O (TOO MANY EQUIVALENCE LISTS, REMAINDER NOT PROCESSED)

22 O (TOO MANY ARGUMENTS, REMAINDER NOT VERIFIED)

23 O (TOO MANY ARGUMENT SHAPES, REMAINDER NOT VERIFIED)

125

24 W (ROOT ENTRY NOT FOUND)

25 O (TOO MANY REFERENCES, REMAINDER PRINTED IN SEPARATE SUB-TREES)

26 O (TOO MANY PROGRAM UNITS, REMAINDER NOT PROCESSED)

27 O (CROSS-REFERENCE TABLE FULL, REMAINDER NOT PRESENTED)

28 O (TOO MANY COMMON-BLOCK OBJECTS TO CROSS-REFERENCE)

29 W (LIBRARY ENTRY NOT FOUND)

30 O (TOO MANY LIBRARY ENTRIES, REMAINDER NOT PROCESSED)

31 O (ARGUMENT-KEY STACK FULL, REMAINDER NOT PROCESSED)

• The stack with argument keys is full. When using many long argument keys the

argument key stack can overflow before the argument stack overflows.

32 O (CONDITIONAL-COMPILATION SYMBOL TABLE FULL)

33 O (CONDITIONAL-COMPILATION NESTING TOO DEEP)

34 O (INVALID NESTING OF CONDITIONAL-COMPILATION META COMMANDS)

35 O (EXPRESSION COULD NOT BE EVALUATED)

36 O (STACK OVERFLOW WHILE PROCESSING REFERENCE STRUCTURE)

37 I (SOURCE POSSIBLY IN FREE FORM. SPECIFY THE FREE-FORM OPTION)

38 O (TOO MANY MESSAGES SUPPRESSED, REMAINDER IGNORED)

39 O (NAME AND REFERENCE DO NOT FIT ON A LINE, ENLARGE PAGE WIDTH)

40 E a ’;’ must not be the first nonblank character on a line

41 E invalid line

• A non-comment, non-compiler directive line with less than 6 characters has been

read.

42 E first line must not be a continuation line

• The line is the first line encountered in the statement and has not a zero or blank

in column 6.

43 E invalid characters in front of continuation line

• Characters have been found in column 1-5 of a fixed form continuation line.

44 W first line after an INCLUDE line must not be a continuation line

45 W too many continuation lines

• The statement has more continuation lines than the emulated compiler can handle.

126 APPENDIX D. MESSAGE SUMMARY

• The statement has more than 19 continuation lines and the Fortran 77 standard

option has been specified.

• The statement has more than 19 continuation lines and the Fortran 90 or 95 standard

option has been specified and the source is in fixed form.

• The statement has more than 39 continuation lines and the Fortran 90 or 95 standard

option has been specified and the source is in free form.

46 E unrecognized characters at end of statement

• After processing the statement there were characters left in the statement buffer.

47 W statement field empty, CONTINUE assumed

48 E invalid characters in label field of statement

• Only a label in column 1-5, and a zero or blank in column 6 are allowed in front of

a statement.

49 W continuation character not in Fortran character set

50 W lower case character(s) used

51 W nonstandard Fortran comment used

52 W conditional compilation or D_line(s) used

53 W tab(s) used

54 W formfeed(s) used

55 W include line(s) used

56 E unbalanced delimiters

57 E invalid filename specification

58 I none of the entities, declared in the include file, is used

59 I character constant split over more than one line

• This may be non-portable.

60 W fixed source form used

61 I no statement found in program unit

• Only comment lines or non-included conditional source lines were read.

62 E continuation character missing

• In freeform input the first nonblank character of a continuation line in a character

context must be an &.

63 I unrecognized characters after compiler directive

127

• the cpp preprocessor does not allow characters after directives without arguments.

64 W line too long

65 I continued character constant has more than one leading blank

66 I comment line(s) within statement

69 E unrecognized statement

• The syntax is not recognized. This may be caused by a non- standard keyword which

is not part of the supported extensions.

70 I ambiguous statement. Type statement assumed

• A function statement must have an (empty) argument list, so this statement is

treated as an explicit type statement.

71 W nonstandard Fortran statement

72 E statement not allowed in MAIN

73 E statement not allowed in BLOCKDATA

• In a blockdata program unit only specification statements, and no executable state-

ments are allowed.

74 E statement not allowed within the specification part of a (sub)module

75 E this statement can only be used within a construct

76 E this statement can only be used within a loop construct

77 E statement not allowed within this context

78 E statement out of order

79 E type specification out of order

• The type specification must confirm the implicit type or be defined before the dec-

laration statement where it is used.

80 W non-DATA specification statements must precede DATA statements

• In Fortran 77 any DATA statement should be placed after other specification state-

ments.

81 E no shape specified, or statement function out of order

• An undeclared subscripted variable or function name with arguments is used at the

left side of an assignment statement.

82 E this statement cannot have prefixes

• Only a FUNCTION or SUBROUTINE statement can have prefixes.

128 APPENDIX D. MESSAGE SUMMARY

83 E internal or module procedure expected

• After a CONTAINS statement at least one internal or module procedure must be

specified.

84 I no path to this statement

85 E procedure END missing

86 E program unit END missing

87 E non-matching program unit or subprogram type in END

88 E non-matching name in END

89 E missing delimiter or separator

90 E unmatched parentheses

91 E missing parenthesis

92 E ")" expected

93 E "/" expected

94 E syntax error

95 W nonstandard Fortran syntax

96 W obsolescent Fortran feature

• This syntax is marked as obsolescent in the effective Fortran standard.

97 I PARAMETER statement within STRUCTURE

• Defined named constants are not local to the structure, so they can better be placed

outside the structure definition.

98 W deleted Fortran feature

• This syntax is marked as deleted in the effective Fortran standard.

99 W DATA statement among executable statements

• This is marked as obsolescent in the Fortran 95 standard.

100 E statement not allowed within a pure procedure

101 E statement not allowed within an interface block

102 E statement only allowed within an interface block

103 E statement only allowed within the spec. part of a (sub)module

104 E statement only allowed in interface block or spec. part of subprog.

105 E statement not allowed within a BLOCK construct

129

106 E lexical token contains blank(s)

• In free form source form blanks in a name, literal constant, operator, or keyword

are not allowed.

107 E blank required in free source form

108 I use a blank to delimit this token

• In fixed form source form of Fortran blanks are not significant but the absence of a

delimiter between these lexical tokens might indicate a syntax error.

109 I lexical token contains non-significant blank(s)

• In fixed form source form blanks are not significant. However, a blank in a name,

literal constant, operator, or keyword might indicate a syntax error.

110 W name or operator too long

• The name or is longer than 6 characters and the conformance to the Fortran 77

standard option has been specified.

• The name or operator is longer than 31 characters and the conformance to the

Fortran 90 standard option has been specified.

• The name or operator is longer than the maximum name length supported by the

emulated compiler.

111 E operator name must consist of letters only

112 W name is not unique if truncated to six characters

113 E invalid name

• The syntax of the name is in error. Invalid characters have been used in the identifier.

114 E statement label too long

• A statement label must consist of 1 to 5 digits.

115 E multiple definition of statement label, this one ignored

116 E statement label already in use

117 E statement label type conflict

• A label must either be used to identify a format statement, or a non-format state-

ment.

118 E invalidly referenced

119 E invalid reference

120 I referenced from outside entry block

130 APPENDIX D. MESSAGE SUMMARY

121 E statement label invalid

122 E format statement label missing

123 E undefined statement label

• A referenced statement label has not been defined.

124 I statement label unreferenced

• A statement label has been defined but is never referenced (used).

125 I format statement unreferenced

134 E missing apostrophe or quote

• The closing apostrophe or quote of a character constant is missing.

135 E zero length character constant

• In Fortran 77 a character constant must not be of zero length.

136 E invalid binary, octal or hexadecimal constant

137 E kind type parameter of real constant not allowed for this exponent

• If the kind is specified, only E is a valid exponent letter.

138 E invalid complex constant

139 E invalid Hollerith or Radix constant

140 E missing character to escape in C-string

• The closing apostrophe or quote of the C-string is preceded by a "\".

141 E invalid usage of named constant

• A named constant is used in a context where a variable, or procedure name is ex-

pected.

• In standard Fortran no named constants are allowed to define the real or imaginary

part of a complex constant.

142 E real or integer constant expected

143 W character length too large

• A character constant or variable is longer than the emulated compiler can handle.

144 E number too large

145 I implicit conversion of scalar to complex

131

• An integer or real value is assigned to a complex variable. The imaginary part of the

complex becomes zero. If the real is zero this information is only presented if the

rigorous option has been specified.

146 E unsigned nonzero integer expected

147 E unsigned integer expected

148 E positive integer expected

149 E integer too large for its kind

150 W integer larger than default

151 E invalid or unrecognized attribute

152 I PRIVATE is already the default

• PRIVATE has already been specified.

153 I PUBLIC is already the default

154 E implicit type already used; type declaration must confirm this type

155 E conflict with generic name

156 E conflict with derived-type name

157 E invalid usage of subscripts or substring

158 E already specified PUBLIC

• PUBLIC has already been specified.

• PRIVATE has been specified but PUBLIC has been specified before.

159 E name already in use

160 E invalid usage of variable

• Because of the previous context the name appeared to be a variable but is now used

in a context where a procedure name is expected.

161 E scalar variable name expected

• An array element, array name, constant, external, structure, derived-type name or

namelist name is not allowed in this context.

162 E named scalar expected

• No array name, array section, array element, substring, or expression is allowed in

this context.

163 E no array allowed

• No array name or array section allowed.

132 APPENDIX D. MESSAGE SUMMARY

164 E missing array or shape specification

165 E invalid shape specification

166 E missing array subscripts

167 E invalid usage of subscripts or bounds

• An array element is not allowed in this context.

• A scalar can not be subscripted or have bounds.

168 E invalid number of subscripts or bounds

• The number of subscripts is larger than the maximum rank.

• The number of subscripts or bounds is different from the declared rank.

• The number of lower-bound expressions or bound remappings is different from the

declared rank.

169 E invalid shape bounds

• The first bound of a specified shape is higher than the second bound.

• Array must not be zero sized in this context.

170 E shape specification out of order

• The shape must be specified before first usage.

171 E multiple specification of shape

• The shape of the array has been declared more than once.

172 E invalid array or coarray specification

173 E invalid usage of assumed-size array specification

• Only dummy array arguments can be specified with an assumed-size.

• The function name of an array-valued function must not be declared assumed-size.

174 E invalid usage of assumed-size array name

• An assumed-size array name can only be used as an actual argument in a procedure

reference for which the shape is not required.

175 E invalid usage of adjustable-array dimension

• Only dummy-array arguments can be specified with adjustable dimensions.

176 E invalidly used in adjustable or automatic type declaration

133

• A variable which specifies an array dimension or character length must either be a

procedure argument (with intent(in)), in common, or a global module variable.

177 E deferred- or assumed-shape array specification not allowed

178 E deferred-shape array specification required

• A POINTER or an ALLOCATABLE array must be specified as a deferred-shape array.

179 E explicit-shape array specification required

• An array valued function result, without the POINTER or ALLOCATABLE attribute,

must have an explicit shape.

180 E invalid usage of automatic-array specification

• An automatic array must not appear in the specification part of a (sub)module

181 E invalid usage of assumed length

• Only a dummy argument, function result, or named constant of type character can

be specified with assumed length.

• The type length of a statement-, internal-, or module function cannot be of assumed

length.

• The type length of a dummy statement function argument can not be of assumed

length.

• A function with pointer valued result cannot be of assumed length.

182 E invalid usage of adjustable-length specification

• Only dummy arguments or automatic objects can be specified with an adjustable

length parameter.

• Statement functions and statement function arguments cannot be specified with

adjustable length

183 E invalid length or kind specification, default assumed

• A kind type parameter must be a nonnegative scalar integer constant expression.

184 E multiple specification of attribute

185 E invalid combination of attributes

186 E attribute not allowed in this context

187 E invalid to (re)define type or attribute

188 E OPTIONAL and INTENT only allowed for dummy arguments

189 E already specified PRIVATE

134 APPENDIX D. MESSAGE SUMMARY

• PUBLIC has been specified but PRIVATE has been specified before.

• PRIVATE has already been specified.

190 E type parameter not allowed for this type

191 E invalid specification of type parameters

192 E invalid usage of type parameters

193 I already specified in host context

194 W unsupported type length, default assumed

• A type length specification of this type is not supported by the emulated compiler.

195 E type length invalidly specified

• The type length cannot be specified in this context

• The emulated compiler does not support this nonstandard Fortran syntax.

196 E initialization only allowed in attributed form of type spec.

• Use ’::’ between statement keyword and list.

197 E a named constant cannot have the POINTER, TARGET, or BIND attribute

198 E constant expected

199 E missing parentheses

• In standard Fortran the list of a PARAMETER statement must be enclosed in paren-

theses. Be aware, however, that the syntax extension without parentheses provided

by some compilers uses a different assumption of the type of named constant. In

standard Fortran the type is the implicitly or explicitly defined type of the name. In

the syntax extension the type becomes the type of the named constant.

200 E constant expression missing

• If the PARAMETER attribute has been specified, the named constant must be given a

value.

201 E entity must have been declared previously

202 E multiple specification of type, this one ignored

• The entity has already been typed by an explicit type statement.

203 E name invalidly typed

• The name must not appear in an explicit type statement.

204 I implicit type already used, change sequence

135

• An explicit type specification confirms the implicit type of a variable that has already

been used.

205 E implicit properties already used, statement out of order

• An explicit type specification defines the type of a variable that has already been

used.

• An implicit statement defines the type of an entity while the implicit type of the

entity has already been used.

• An IMPLICIT ALL compiler directive has been specified while the implicit type of one

or more entities has already been used.

• A shape specification defines the shape of a variable or function that has already be

used as a scalar.

206 E invalid implicit range

• The first and second character in an IMPLICIT list must in lexicographic order.

207 E multiple implicit type declaration, this one ignored

• An implicit type has been specified more than once for one or more characters in

the list.

• IMPLICIT NONE has been specified and another IMPLICIT statement has already been

specified.

• IMPLICIT NONE has been specified but an implicit type has already been used.

208 W name not explicitly typed, implicit type assumed

• The entity has not been explicitly typed and:

• IMPLICIT UNDEFINED has been specified for the first character of the symbol.

• The declare option has been specified.

209 W conflict with IMPLICIT NONE specification or option

• An IMPLICIT statement has been specified while IMPLICIT NONE has been specified

or enabled.

210 E SAVE has already been specified for this entity

211 E SAVE and AUTOMATIC cannot be specified both

212 E invalid to save this entity

• Only named common blocks and variables can be saved.

• There is no need to save the blank common because the common-block values in

blank common do not become undefined after a RETURN or END.

136 APPENDIX D. MESSAGE SUMMARY

• Common-block objects cannot be saved.

• Automatic and static arrays and pointees cannot be saved.

• Local variables of pure procedures must not be saved.

213 E SAVE or BIND specified but entity not declared

• A variable or common block has been specified in a SAVE or BIND statement but has

not been declared or used.

214 E not saved

• If a common block has been specified in a SAVE statement in a subprogram, it must

be specified in a SAVE statement in every subprogram in which the common block

has been specified.

• If an object of a type for which component initialization is specified appears in the

specification part of a (sub)module and does not have the ALLOCATABLE or POINTER

attribute, the object must be saved.

• An object in an initial data target must be saved.

215 E already specified automatic, static or allocatable

• An object must only be specified automatic, static or allocatable once.

• AUTOMATIC and STATIC cannot be specified both.

216 E invalidly specified automatic, static or allocatable

• A dummy variable, a common-block object and a pointee must not be specified

automatic, static or allocatable.

• An allocatable array must not be specified automatic or static and must not be a

pointer.

• An automatic, static or allocatable object must not be equivalenced.

• A target in a pointer initialization must not be allocatable.

• An assumed-type object must not be allocatable.

217 E conflict with program unit or ENTRY name

• The name of a constant, as defined in a PARAMETER statement must not be the same

as a global name of the subprogram, such as the name of the program unit, or an

entry.

• The name of a common block must not be the same as the name of a program unit

or ENTRY.

218 E conflict with common-block name

137

• The name of a constant, as defined in a PARAMETER statement must not be the same

as the name of a common block specified in the current subprogram.

• A global name, such as the name in a PROGRAM, BLOCKDATA, SUBROUTINE, FUNC-

TION or ENTRY statement, must not be the same as the name of a common block of

the program.

219 E invalidly in COMMON, EQUIVALENCE, or NAMELIST

• A dummy procedure argument, automatic or allocatable variable and a pointee can-

not be stored in a common block, and must not be equivalenced.

• A pointer array cannot be stored in common.

• If a compiler supports NAMELIST as a FORTRAN 77 extension, a dummy argument

and a pointee can not be placed in a namelist.

• A dummy argument with non-constant bound, a variable with nonconstant character

length, an automatic object, a pointer, a variable of a type that has a pointer, or

allocatable variable, can not be placed in a namelist.

• An equivalence object must not have the TARGET attribute or be a pointee.

• An object, imported from a (sub)module, must not be in EQUIVALENCE or COMMON.

220 E invalid initialization of entity in DATA or type statement

• In a blockdata program unit, only common-block variables can be initialized.

• A dummy procedure argument, automatic array, allocatable variable and pointee

cannot be initialized in a DATA or type statement.

• In Fortran 90 a pointer can only be initialized with a pointer assignment, ALLOCATE

or NULLIFY statement. From Fortran 95 pointer initialization is supported.

• A component with the ALLOCATABLE attribute can not be initialized by default.

• A variable in a pure procedure must be initialized other than by default.

221 E more than once in BLOCKDATA

• The common block has been specified in more than one block-data program unit.

222 W mixing of character and numeric types

• In standard Fortran it is not allowed to store character and numeric data in the same

common block.

223 W initialization of named COMMON should be in BLOCKDATA

• Variables in a named common block should only be initialized in a blockdata pro-

gram unit.

224 W invalid initialization of variable in blank COMMON

138 APPENDIX D. MESSAGE SUMMARY

• Variables in blank common should not be initialized.

225 E more than once in COMMON

226 I objects not in descending order of type length

• This order could cause alignment problems on some processors.

227 I extension of COMMON

• This COMMON statement extends a previously declared common block with the

same name.

228 W size of common block inconsistent with first declaration

• Named common blocks must have the same length in every occurrence. The length

of the common block in this occurrence is different from that as specified in the

main program or as specified in the first occurrence encountered.

229 W type in COMMON inconsistent with first declaration

• Numeric and character objects must not be stored in the same common block. The

type of the objects in this occurrence of the common block is different from that in

main or in the first occurrence encountered.

230 W list of objects in named COMMON inconsistent with first declaration

• In this occurrence of the named common block objects with different types, type

lengths, or array sizes have been stored than in the main program or in the first

occurrence encountered.

231 W array bounds differ from first occurrence

232 I only specified once

• The common block has been specified in one subprogram only.

233 I common block inconsistently included from include file(s)

• The common block has been specified in an include file at one occurrence and spec-

ified directly in another occurrence.

• The same common block has been specified in different include files.

234 E invalid equivalence with object in COMMON

• If more than one of the objects in an equivalence list is in a common block, the

objects cannot be equivalenced.

235 E equivalence of variable to itself

• The equivalence lists are such that you try to equivalence an object to itself.

139

236 E storage allocation conflict due to multiple equivalences

237 I equivalence of arrays with possibly different type lengths

• When using short integers and/or logicals, this code may be highly non-portable.

238 E invalid storage association of object with a pointer component

• A variable of a derived type with pointer components must not be used in EQUIVA-

LENCE or COMMON.

239 E invalid extension of COMMON through EQUIVALENCE

• An object in a common block is in such a way equivalenced with an array that storage

must be allocated before the start of the common block.

240 W extension of COMMON through EQUIVALENCE

• An object in a common block is in such a way equivalenced with an array that the

common block has to be extended.

241 W nonstandard mixing of types in EQUIVALENCE

• Character and numeric data must not be equivalenced.

• Objects of type character must be of the same kind.

• Objects of an intrinsic, non default kind, must be of the same type and kind.

• Objects of a sequence derived type that is not a numeric sequence or character

sequence type, must be of the same type and have the same type parameter values.

242 E more constants than variables

• More constants than variables have been found in this data statement list.

243 E more variables than constants

• More variable elements than constants have been found in this data statement list.

244 E more than once initialized in DATA or type statement

245 E no expression allowed

246 E invalid type or type length for an integer POINTER

247 W assumed length character functions are obsolescent

• This is marked as obsolescent in the Fortran 95 standard.

248 I object already used, change statement sequence

• An explicit specification of an attribute confirms the attribute of an object that has

already been used.

140 APPENDIX D. MESSAGE SUMMARY

249 W list of objects in blank COMMON inconsistent with first declaration

• In this occurrence of the blank common-block objects with different types, type

lengths, or array sizes have been stored than in main or in the first occurrence

encountered.

250 I when referencing modules implicit typing is potentially risky

• There is an increased potential for undetected errors in a scoping unit that uses

both implicit typing and the USE statement because module objects can be typed

differently from the implicit type.

251 E SAVE has already been specified for each entity in this scoping unit

252 E a private object must not be placed in a public namelist group

• If a namelist-group-name has the PUBLIC attribute, no object in the namelist-group-

object-list shall have the PRIVATE attribute or have private components.

253 W common-block data not retained: specify in root or save it

• The common block has not been SAVEd, has not been specified in the main pro-

gram or in the root procedure of the referencing program units so the data become

undefined after leaving the program unit.

254 W public module data not retained: specify in root or save it

• Not all public module data has been SAVEd, the module was not referenced in the

main program or in the root procedure of the referencing program units so the data

become undefined after leaving the program unit.

255 E derived type or structure undefined

• A variable of derived type is declared but the derived type has not been defined.

• A record is declared but the structure has not been defined.

• A parent type name shall be the name of a previously defined extensible type.

256 E statement invalid within derived type or structure definition

• This statement is not allowed within the definition of a derived type or structure.

257 E derived type or structure name missing

• The derived type name is missing in the type declaration

• The outer structure must have a name.

258 E invalid structure nesting

259 E missing END TYPE or END STRUCTURE

260 E missing END UNION

141

261 E missing END MAP

262 E invalid usage of record or aggregate field name

• A record must not be specified in an EQUIVALENCE, DATA, or NAMELIST statement.

• An aggregate field name is not allowed in formatted I/O.

263 E component or field name missing

• No derived type components or structure fields have been specified.

• A structure field which is a structure must have a field name.

264 E unknown component, field name, or type parameter

• A component or type parameter has been referenced which has not been declared

in the derived type.

• A record field has been referenced which has not been declared in the structure.

265 E derived type must be of sequence type

266 E derived type or components must be PRIVATE

267 E no fields specified in structure definition

268 E incorrect number of component specs in structure-constructor

269 E malformed structure component

• At most one of the parts of a structure-component can be an array.

• A part-name to the right of an array must not have the POINTER attribute.

270 E derived-type component(s) or binding(s) inaccessible

• The component(s) or binding(s) of the derived-type are declared private.

271 E derived-type is inaccessible

272 E an object with a PRIVATE type cannot be PUBLIC

273 E invalid usage of structure-component or type-parameter

• A structure-component is not allowed in an EQUIVALENCE statement.

• The left side part of a structure must be of derived type.

• A type inquiry can not be defined.

274 E initialization of component or field not allowed

• In Fortran 90 initialization of derived-type components is not supported.

275 E derived-type object must be of sequence type or have the BIND attr.

142 APPENDIX D. MESSAGE SUMMARY

• The derived-type of an object in COMMON or EQUIVALENCE must be of sequence

type or have the BIND attribute.

• The type of a dummy argument must be of sequence type or have the BIND attribute

if the type is defined in the local context.

• The type of an actual argument of an external procedure must be of sequence type

or have the BIND attribute

276 I derived type or structure inconsistently included from include file

• The derived type or structure has been specified in an include file at one occurrence

and specified directly in another occurrence.

• The same derived type or structure has been specified in different include files.

277 E component must be allocatable

279 E invalid usage of derived-type name

280 E no type parameter

281 E unknown type-bound procedure

282 E the parent type must be extensible

283 E invalid sequence of operators

284 I not allocated

• A conditionally referenced or defined allocatable variable was not allocated.

• An INTENT(IN) argument was not allocated.

285 E scalar integer constant expression expected

286 E undefined when entered through ENTRY, specify SAVE to retain data

287 E scalar integer constant name expected

288 E scalar integer variable name expected

• An integer which is not an array element, array name, constant, external, structure,

derived-type name or namelist name is expected.

289 E scalar integer variable expected

290 E constant or scalar integer variable expected

291 E unsigned nonzero integer expected

292 E expression expected

293 E constant expression expected

294 E integer expression expected

143

295 E scalar integer or real variable expected

296 E NULL() or target expected

297 E integer, logical, or character expression expected

298 E integer or character expression expected

299 E logical expression expected

300 E character constant or unsigned integer constant expected

301 E character expression expected

302 E character substring must not be zero sized in this context

303 E scalar logical expression expected

304 E scalar integer expression expected

305 E scalar integer or real expression expected

306 E array expected

307 E variable not defined

• The variable is referenced but has not been defined. No value has been assigned

to the variable, to the elements of the array (if the variable is an array), or to the

components (if the variable is of derived type), or the fields of a record.

• The variable is specified in a (sub)module but is not saved.

308 E no statement label assigned to this variable

• The variable has been referenced as a label but no label has been assigned to the

variable.

309 I possibly no statement label assigned to this variable

• The variable has been referenced as a label but, if statements are executed sequen-

tially, no label has been assigned to the variable. There might be, however, a path

through which the variable is assigned before referenced.

310 I label assigned to dummy argument or variable in COMMON

• It is unsafe and not functional to use a global variable to denote a label.

311 I both a numeric value and label assigned to this variable

• The variable is used both to denote a label and a numeric value. This is potentially

unsafe.

312 E no value assigned to this variable

144 APPENDIX D. MESSAGE SUMMARY

• The variable is referenced but no value has been assigned to the variable, an element

of the array, a component of the structure, or a field of the record.

• The variable is a dummy output argument but no value has been assigned to it.

313 I possibly no value assigned to this variable

• The variable has been referenced in an expression but, if statements are executed

sequentially, no value has been assigned to the variable. There might be, however,

a path through which the variable is defined before referenced.

• A dummy argument is referenced but it is not a dummy argument in all entries

through which this statement can be reached.

314 I possible change of initial value

• A variable has been initialized in a DATA statement or explicit type specification

statement and a new value has been assigned to it. For a scalar of intrinsic type

this means that the initial value has been superseded permanently. For an array

or a variable of derived type this means that the value of one or more elements or

components might have been superseded.

315 I redefined before referenced

• A new value was assigned to the variable before it was referenced.

• The dummy argument is apparently an output variable while the last operation on

the actual argument was an assignment.

316 W not locally defined, specify SAVE in the module to retain data

• The variable is not defined in this program unit or in the module where it is declared.

It could have been defined by another program unit using the module. In that case

you must save the data in the module to preserve the data. From Fortran 2008 on

module data are saved by default.

317 E entity imported from more than one module: do not use

318 E not allocated

• An allocatable variable must be allocated before being defined or referenced.

319 W not locally allocated, specify SAVE in the module to retain data

• An allocatable variable must be allocated before being defined or referenced. The

variable is not allocated in this program unit. It is use associated but not saved.

From Fortran 2008 on module data are saved by default.

320 E pointer not associated

321 I pointer not associated

322 I target not associated with a pointer

145

323 I variable unreferenced

• A variable has been defined but is not referenced.

324 I variable unreferenced as statement label

• A label has been assigned to this variable but the variable has not been referenced

as a label.

325 I input variable unreferenced

• A variable which is defined by a READ, INPUT, or DECODE statement is not referenced.

326 I entity, declared in include file, not used

• An external, namelist, or local variable has been declared in an include file but is

not used in the current subprogram.

327 E subscript out of range

328 I array, array extent, or character variable is zero sized

• The array extent is zero.

• The first bound of a specified shape is higher than the second bound.

• The first substring value is higher than the second.

329 E substring expression out of range

330 E invalid substring

331 E invalid usage of substring

332 W referenced character elements defined

• In Fortran 77 none of the character positions defined may be referenced in the same

statement.

333 E division by zero

334 E invalid power execution

• It is invalid to raise a negative number to a real exponent.

335 E types do not conform

336 W typeless data used in invalid context

• Octal, hexadecimal and Hollerith data should only be used in DATA or PARAMETER

statements

337 I implicit conversion to shorter type

146 APPENDIX D. MESSAGE SUMMARY

• The type length of the variable is shorter than the resulting type length of the ex-

pression.

338 I character variable padded with blanks

339 E integer overflow in expression

340 I equality or inequality comparison of floating point data

• Because of limited precision and different implementations of real and complex

numbers the result of this comparison may be unpredictable.

341 I eq. or ineq. comparison of floating point data with integer

• Because of limited precision and different implementations of real and complex

numbers the result of this comparison may be unpredictable.

342 I eq.or ineq. comparison of floating point data with zero constant

• Because of limited precision and different implementations of real and complex

numbers the result of this comparison may be unpredictable.

343 I implicit conversion of complex to scalar

• An integer or real is assigned to a complex variable.

344 I implicit conversion of constant (expression) to higher accuracy

• In an assignment statement precision is lost if the variable is of a more accurate

type than the constant or constant expression.

• In a complex constant precision is lost if one of the components is of a less accurate

type than the other.

• In an expression precision is lost if a constant is specified in a less accurate type

than the resulting expression.

345 I implicit conversion to less accurate type

• Precision is lost due to conversion of real to real of less precision.

346 I implicit conversion of integer to real

347 I non-optimal explicit type conversion

• If the target of an expression is of type double precision real, best is to convert the

expression primaries to double precision real explicitly, e.g. by specifying the kind

type parameter.

• If the target of an expression is of type double precision complex, best is to convert

the expression primaries to double precision complex explicitly, e.g. by specifying

the kind type parameter.

147

348 E invalid usage of logical operator

349 E invalid usage of relational operator

350 E invalid mixed mode expression

351 E invalid usage of operator

352 W nonstandard operator

353 E undefined operator

354 E invalid concatenation with character variable of assumed length

• In Fortran 77 concatenation with a character variable of assumed length is only

allowed in a character assignment statement.

355 E array-section specification invalid for assumed-shape array

• The second subscript of a subscript triplet of an array section must not be omitted

for an assumed-shape array.

356 E array section specified incorrectly

357 E no array section allowed in this context

358 E invalid stride

359 E array has invalid rank

360 E each element in an array constructor must be of the same decl. type

361 E each element in an array constructor must have the same type length

362 E vector-valued subscript not allowed in this context

363 E array does not conform to expression, other arguments or target

• The rank or shape of the argument differs from that of the other arguments of the

intrinsic procedure reference.

• The rank or shape of the expression differs from that of the left-hand side of an

assignment statement.

364 E arrays do not conform

• The rank or shape of the operands in an expression differ.

365 E only nonproc.pointers and allocatable variables can be (de)allocated

366 E defined assignment not allowed in this context

367 E pointer assignment expected

368 E invalid usage of pointer assignment

369 E invalid assignment to pointer

148 APPENDIX D. MESSAGE SUMMARY

370 E invalid target for a data pointer

• the Object must have the POINTER or TARGET attribute to be assigned to a data

pointer

371 E only pointers can be nullified

372 E target must have the same rank as the pointer

373 E shape of variable differs from the shape of the mask expression

374 E assignment of array expression to scalar

375 E integer overflow in assignment

• The right-site expression yields a value which does not fit in the left-site target.

376 W scalar integer variable name expected

• An integer which is not an array element, array name, constant, external, structure,

derived-type name or namelist name is expected.

377 W scalar integer expression expected

378 W pointer not locally associated, specify SAVE in the module

• A pointer must be associated before being referenced. The pointer is not associated

in this program unit. It is use associated but not saved. From Fortran 2008 on

module data are saved by default.

379 E invalid operation on a non-local variable in a pure procedure

• A global variable must not be modified in a pure procedure.

• Allocation, deallocation of global variables is not allowed in a pure procedure.

• pointer operations on global variables are not allowed in a pure procedure.

380 E shape of mask expression differs from shape of outer WHERE construct

• If a WHERE construct contains a WHERE statement, a masked ELSEWHERE statement,

or another WHERE construct then each mask expression shall have the same shape.

381 E none of the equivalenced variables of the same type defined

• The variable is referenced but the variable and none of the equivalenced variables

with the same type are defined.

382 I none of the equivalenced variables of the same type referenced

• The variable is defined but the variable and none of the equivalenced objects with

the same type are referenced.

383 I truncation of character constant (expression)

149

• The type length of the variable is shorter than the resulting type length of the ex-

pression.

384 I truncation of character variable (expression)

• The type length of the variable is shorter than the resulting type length of the ex-

pression.

385 E invalid usage of construct name

386 E construct name expected

387 E non-matching construct name

• The construct name does not match the name of a construct.

388 E invalid construct nesting

389 E invalid statement in logical IF

• A statement in a logical IF must be executable, but no IF, ELSEIF, ELSE, DO, or END.

390 E ENTRY within an IF construct

391 E too many ENDIF’s

392 E ELSE must be between IF and ENDIF

393 E missing ENDIF(’s)

394 E THEN missing

395 E invalid sequence of ELSEIF and ELSE

396 E ELSEIF, ELSE, or ENDIF at invalid DO level

397 E more than one ELSE at this IF level

398 E invalid DO loop incrementation parameter

• The incrementation parameter of an (implied) DO loop is too small.

399 E invalid implied-DO specification

400 E invalid DO-loop specification

401 E terminal statement of loop at invalid IF level

402 E invalid terminal statement of DO construct

• A DO construct must end with an executable statement, but no IF, ELSEIF, ELSE,

ELSEIF, DO, STOP, RETURN, or END.

403 E invalid transfer of control into construct

150 APPENDIX D. MESSAGE SUMMARY

• A branch is detected which transfers control into a DO, an IF, CASE, WHERE, or

FORALL construct

404 E referenced from outside construct

405 E redefinition of DO variable or FORALL index within construct

• A DO variable of an active loop is modified.

• An index name of a FORALL statement is modified in the forall statement or active

FORALL construct.

406 E ENTRY within DO construct

407 E terminal statement of DO construct out of order

408 E missing terminal statement of DO construct

• No definition of the label of the terminal statement of the DO loop has been found.

• END DO missing

409 E missing END LOOP or UNTIL

410 E missing END WHILE or UNTIL

411 E too many END DO’s, END LOOP’s, or END WHILE’s

412 E terminal statement of DO construct at invalid CASE level

413 W shared DO termination

• This syntax is marked as obsolescent in Fortran 90 and up.

414 E ENTRY within REMOTE BLOCK construct

415 E too many END BLOCKS

416 E missing END BLOCK (’s)

417 E ENTRY within a CASE construct

418 E type inconsistent with SELECT CASE expression type

419 E kind inconsistent with SELECT CASE expression kind

420 E invalid range of values specified

• A range of values of type logical cannot be specified

421 E overlapping CASE range

422 E CASE statement expected after a SELECT CASE statement

423 E a CASE statement must be within a CASE construct

424 E too many END SELECT’s

151

425 E missing END SELECT (’s)

426 E only one CASE DEFAULT statement allowed in a CASE construct

427 E CASE, or END SELECT at invalid DO level

428 E CASE, or END SELECT at invalid IF level

429 E ELSEIF, ELSE, or ENDIF at invalid CASE level

430 E invalid statement after WHERE

431 E ENTRY within WHERE construct

432 E too many END WHERE’s

433 E an ELSEWHERE must be within a WHERE construct

434 E missing END WHERE(’s)

435 E too many END FORALL’s

436 E missing END FORALL(’s)

437 E reference of FORALL index in a forall triplet specification list

438 W obsolescent terminal statement of DO loop

• In Fortran 90 and up a terminal statement of a DO loop must be an END DO or a

CONTINUE statement

439 E statement invalid within ASSOCIATE construct

440 E too many END ASSOCIATES’s

441 E statement invalid within SELECT TYPE construct

442 E TYPE IS, CLASS IS, or CLASS DEFAULT at invalid DO level

443 E TYPE IS, CLASS IS, or CLASS DEFAULT at invalid IF level

444 E TYPE IS, CLASS IS, or CLASS DEFAULT at invalid CASE level

445 E only one CLASS DEFAULT statement allowed in a SELECT TYPE construct

446 E missing output item list

447 E invalid input/output list

448 W "," not allowed

• After a command-info list, no comma must be used.

• In an explicit type statement a comma may only be used in a CHARACTER statement

after the length specification.

449 W invalid usage of parentheses

152 APPENDIX D. MESSAGE SUMMARY

• Redundant parentheses are not allowed in an I/O list.

450 E invalid reference of standard unit

• OPEN, CLOSE, ENCODE, DECODE, BACKSPACE, REWIND is not possible on the standard

unit.

451 W list directed I/O not allowed

• List directed I/O is only allowed for sequential I/O, and not on internal files.

452 E sequential formatted access expected

• Only sequential formatted I/O is allowed for internal I/O and I/O on the standard

unit.

453 E invalid reference of internal file

• Only read and write operations can be performed on an internal file.

• The unit identifier must be a character variable, but not a constant or expression.

454 I possible recursive I/O attempt

• A function in which I/O may occur is referenced in an I/O statement.

455 W unrecognized or unsupported specifier

• An unsupported, nonstandard Fortran specifier has been detected.

• The specifier is not supported for this IO statement.

456 W nonstandard Fortran specifier

• One of the standard options is specified and the specifier is not in the Fortran stan-

dard.

• The specifier is an old, obsolescent, synonym for a standard specifier.

457 E more than once specified

• The specifier has already been specified in the list.

458 E invalid usage of specifier

• POS= only allowed for an external unit that is not specified by an asterix.

• ID= only allowed in combination with PENDING=

• If NEWUNIT= specified, FILE= or STATUS= must be present.

459 E no unit specified

460 E no unit or filename specified

153

461 E unit and filename specified

462 E invalid or missing io-unit identifier

• A unit identifier must be an asterix (standard unit), a positive integer expression, or

a character variable.

463 E missing or invalid format specifier

• A format specifier must be: a label of a format statement, an integer variable to

which a label of a format statement is assigned, a character expression containing

the format specification, a non-character array name (language extension).

• In Fortran 90 a namelist group name must be specified with the NML= specifier.

464 W missing delimiter in format specification

465 E statement label expected

466 E more than once in OPEN, CLOSE, or INQUIRE list

• A variable or array element, or any associated entity, must not be both referenced

and defined, or defined more than once in an OPEN, CLOSE or INQUIRE statement.

467 E "FMT=" or "NML=" expected

• When in a control-info list a keyword has been used, all specifiers from there on

must be specified using keywords.

468 E "END=" only allowed in a sequential READ or WAIT statement

469 W "FILE=" not allowed for a scratch file

470 W "RECL=" only allowed for a direct access file

471 E "BLANK=" only allowed for a formatted file

472 E "ADVANCE=" only allowed for external formatted sequential i/o

• The ADVANCE= specifier may be present only in a formatted sequential input/output

statement with explicit format specification and with no internal file unit specifier.

473 E "EOR=" and "SIZE=" only allowed in READ with "ADVANCE=NO" or WAIT

• The EOR= and the SIZE= specifiers are only allowed in an input statement that con-

tains the ADVANCE= specifier with the value NO.

474 W no recordsize specified

476 E must be declared EXTERNAL

• The procedure name specified in "USEROPEN=" must have been declared EXTERNAL

477 E invalid combination of specifiers

154 APPENDIX D. MESSAGE SUMMARY

• For namelist I/O no format must be specified.

• POS= and REC= must not be specified both.

478 E invalid usage of namelist name

• A namelist specifier is only allowed in sequential read and write statements on an

external file.

479 E namelist name expected

480 E namelist i/o only allowed on an external file

481 I extension of previously defined namelist

• This NAMELIST statement extends a previously declared namelist with the same

name.

482 E invalid type

483 W unrecognized value

• An unsupported, nonstandard Fortran value has been detected.

484 E invalid usage of value

485 W nonstandard Fortran value

486 E invalid repeat

• A nonzero, unsigned, integer constant is required.

487 E missing repeat

• A nonzero, unsigned, integer constant is required.

488 E invalid usage of repeat

489 E invalid usage of scale factor

• A scalefactor is only allowed for floating point edit descriptors.

490 W nonstandard edit descriptor

491 E missing or invalid width

• A nonzero, unsigned, integer constant is required.

492 E invalid edit descriptor

• No valid edit descriptor was detected.

493 E external i/o not allowed in a pure procedure

494 I namelist unreferenced

155

• A namelist has been specified but is never referenced (used).

495 I more than once in namelist group

496 E namelist group undefined

• A namelist group is referenced but it has not been specified.

497 E stream and async i/o only allowed on ext. files and not on * units

498 E namelist i/o only allowed for sequential i/o

499 E accompanying subprogram statement missing or incorrect

500 E no main program

• The complete option was specified but no main program is present.

501 I recursive reference

502 I possible recursive reference

503 E more than one main program

• A main program is a program unit of which the first statement is not a BLOCKDATA,

SUBROUTINE, or FUNCTION statement. Therefor, besides of a program unit begin-

ning with a PROGRAM statement, a main program will also be detected when e.g.

two consecutive END statements have been specified.

504 E more than one unnamed BLOCKDATA

• Only one unnamed blockdata program unit is allowed.

505 E multiple definition of BLOCKDATA

• The name of the blockdata program unit has already been defined as the name of a

blockdata program unit.

506 E multiple declaration of program unit or entry

• The name has been defined already before as a PROGRAM, SUBROUTINE, FUNCTION

or ENTRY name.

• The name of a program, subroutine, function, or entry name has already been used.

507 E multiple declaration of statement function

508 I entries are not disjoint

• There could be transfer of control to the current or other entry blocks.

509 E no name specified

• A procedure, (sub)module or type name is expected.

156 APPENDIX D. MESSAGE SUMMARY

510 E multiple declaration of interface, this one ignored

511 E explicit interface required

512 E invalid subroutine or function reference

• A procedure reference is not allowed in this context.

• The function needs an explicit interface and must not be referenced in this context.

513 E invalid usage of procedure name

• The name of the current subprogram or entry cannot be used as an actual argument.

• An internal procedure name cannot be used as an actual argument.

• A procedure name must not be specified in a type-declaration-statement with a

language-binding.

514 E subroutine/function conflict

• The procedure is referenced as a subroutine but has been referenced or defined as

a function before.

• The procedure is referenced as a function but has been referenced or defined as a

subroutine before.

515 E invalid subprogram type

516 E invalid usage of EXTERNAL

• A procedure name, as specified in an EXTERNAL statement, cannot be used at the

left side of an assignment statement or as a statement function.

517 E procedure actual argument must be declared EXTERNAL or INTRINSIC

• A procedure name, used as an actual argument, must be declared EXTERNAL or

INTRINSIC.

518 I referenced procedure not declared EXTERNAL

519 I name of external procedure is same as module procedure name

520 E external or dummy procedure expected

• The interface of the containing subprogram must not be specified in an interface

block.

• The interface of an internal or module procedure must not be specified in an inter-

face block.

521 E invalid usage of generic name

• The generic name of a procedure cannot be used as an actual argument. Use the

appropriate specific name.

157

522 E an interface with (module) procedure statements must be generic

523 E procedure already in list of specific procedures of this interface

524 W mixing of subroutines and functions in generic interface not allowed

• The Fortran standard does not allow to combine specific functions and subroutines

in a generic procedure. Some compilers allow this as a syntax extension.

525 E defined operator procedure must be a function

526 E defined assignment procedure must be a subroutine

527 E no matching intrinsic or specific procedure found

528 I no procedure interfaces specified in interface block

529 E recursive reference

• A function is referenced recursively while recursive functions are not supported in

the Fortran language level specified.

• A module is referenced circularly.

530 W possible recursive reference

• A path has been detected through which the procedure may reference itself.

531 I function is impure

• An argument and/or common-block object is being changed in this procedure.

• A local variable is saved.

• A non-local variable is changed in this procedure.

• A variable is initialized in a type or data statement.

532 E type conflict with type of function

• All entries within a character function must be of type character.

• The type specified when referencing the function differs from the specification of

the function.

533 E type length conflict with type length of function

• All entries within function must have the same type length.

• The type length while referencing the function differs from the specification of the

function.

534 E type of function inconsistent with first occurrence

• The type of the function differs from that at the first reference encountered.

158 APPENDIX D. MESSAGE SUMMARY

535 E function type length inconsistent with first occurrence

• The type length of the function differs from that at the first reference encountered.

536 I function type length inconsistent with first occurrence

• The type length of the dummy function differs from that at the first reference en-

countered.

537 E shape of function reference differs from shape at first reference

538 E shape of function reference differs from shape of function result

539 E procedure must have private accessibility

• If one or more of the dummy arguments or the function result is of private type the

procedure must be private.

540 E multiple specification of prefix specification

541 E invalid combination of prefix specifications

• A procedure cannot be specified elemental and recursive.

• PURE and IMPURE cannot be specified both.

542 E procedure must be pure

• Any procedure referenced in a pure subprogram, a forall statement, FORALL con-

struct, or DO CONCURRENT construct shall be pure.

543 E invalid usage of prefix specification

544 E dummy argument of elemental procedure must be scalar

545 E dummy arg. of elemental proc. must not be a pointer or allocatable

546 E elemental procedure must be scalar

547 E elemental procedure must not be a pointer or allocatable

548 E dummy procedure argument not allowed in elemental procedure

549 I referenced intrinsic procedure not declared INTRINSIC

550 E invalid usage of alternate return

• An alternate return is only allowed in a subroutine which is not elemental.

551 E invalid dummy argument list

552 E invalid usage of arguments

• In an EXTERNAL or INTRINSIC specification a single procedure name without argu-

ments is required.

159

• In a dummy argument list a dummy procedure must not have arguments.

• In the reference of an external procedure in USEROPEN no arguments are allowed.

553 E invalid usage of dummy argument

• The name of a dummy procedure argument has been used as the name of a statement

function.

• A pointee cannot be a dummy argument.

554 E invalid dummy argument

• A dummy procedure argument cannot be a constant or expression.

555 E more than once in argument list

• A dummy argument is specified more than once in the dummy argument list.

• An argument keyword is specified more than once in the actual argument list.

556 I argument unreferenced in statement function

• A dummy argument of a statement function is not referenced in the statement func-

tion.

557 I dummy argument not used

558 E missing argument list

• In an expression or in an output statement a function must have an actual argument

list. This argument list can be empty.

• In a FUNCTION statement an argument list is required. This list can be empty.

559 E argument missing, or no corresponding actual argument found

• A null argument is nonstandard Fortran.

• A non-optional actual argument is missing.

• No actual argument with the dummy argument keyword is found.

560 E incorrect number of arguments

561 E incorrect argument type

562 E incorrect argument attributes

563 E number of arguments inconsistent with first occurrence

• The number of actual arguments differs from that at the first reference encountered.

564 I number of arguments inconsistent with first occurrence

160 APPENDIX D. MESSAGE SUMMARY

• The number of arguments of the dummy procedure differs from that at the first

reference encountered.

565 E number of arguments inconsistent with specification

• The number of actual arguments differs from that in the specification of the proce-

dure.

566 E argument keyword missing in actual argument list

• When in an argument list a keyword has been used, all subsequent arguments must

be specified using keywords.

567 E argument keyword does not match a dummy argument

568 E argument class inconsistent with first occurrence

• The actual argument is a function, subroutine, external name, record, or label, but

at the first reference encountered, the argument is of a different class.

569 I type inconsistent with first occurrence

• The actual argument of the dummy procedure is a function, subroutine, external

name, record, or label, but at the first reference encountered, the argument is of a

different class.

• The type of a common-block object differs from that in the first list encountered.

570 E argument class inconsistent with specification

• The actual argument is a function, subroutine, external name, or label, but in the

specification of the procedure the argument is of a different class.

571 E argument type inconsistent with first occurrence

• The type of an actual argument differs from that at the first reference encountered.

572 W type inconsistent with first occurrence

• The type of an actual argument of the dummy procedure differs from that at the

first reference encountered.

• The type of a common-block object differs from that in the first list encountered.

573 E argument type inconsistent with specification

• The type of an actual argument differs from that in the specification of the proce-

dure.

574 E argument type inconsistent with first occurrence (int/log)

• The type of an actual argument differs from that at the first reference encountered.

(Mixing of integer and logical types of equal lengths.)

161

575 I argument type inconsistent with first occurrence (int/log)

• The type of an actual argument of the dummy procedure differs from that at the

first reference encountered. (Mixing of integer and logical types of equal lengths.)

576 E argument type inconsistent with specification (int/log)

• The type of an actual argument differs from that in the specification of the proce-

dure. (Mixing of integer and logical types of equal lengths.)

577 E argument type inconsistent with first occurrence (int/real)

• The type of an actual argument differs from that at the first reference encountered.

(Mixing of integer and real types of equal lengths.)

578 I argument type inconsistent with first occurrence (int/real)

• The type of an actual argument of the dummy procedure differs from that at the

first reference encountered. (Mixing of integer and real types of equal lengths.)

579 E argument type inconsistent with specification (int/real)

• The type of an actual argument differs from that in the specification of the proce-

dure. (Mixing of integer and real types of equal lengths.)

580 E argument type length inconsistent with first occurrence

• The type length of an actual argument differs from that at the first reference en-

countered.

581 I type length inconsistent with first occurrence

• The type length of an argument of a dummy procedure differs from that at the first

reference encountered.

• The type length of a common-block object differs from that in the first list encoun-

tered.

• The type length is explicit in one instance and implicit in another.

582 E argument type length inconsistent with specification

• The type length of an actual argument differs from that in the specification of the

procedure.

583 E type of function argument inconsistent with first occurrence

• The type of a function actual argument differs from that at the first reference en-

countered.

584 I type of function argument inconsistent with first occurrence

162 APPENDIX D. MESSAGE SUMMARY

• The type of a function actual argument of the dummy procedure differs from that

at the first reference encountered.

585 E argument type kind inconsistent with first occurrence

• The type kind of an actual argument differs from that at the first reference encoun-

tered.

586 I type kind inconsistent with first occurrence

• The type kind of an argument of a dummy procedure differs from that at the first

reference encountered.

• The type kind of a common-block object differs from that in the first list encoun-

tered.

• The type kind is explicit in one instance and implicit in another.

• The type kind has been specified in one instance, the type length in the other.

587 E type of function argument inconsistent with specification

• The type of a function actual argument differs from that in the specification of the

procedure.

588 E argument type kind inconsistent with specification

• The type kind of an actual argument differs from that in the specification of the

procedure.

589 E shape of this argument must be supplied as argument

• Adjustable shapes must be specified in each entry in which the array occurs.

590 E array versus scalar conflict

• An actual argument is an array name while at a previous reference the argument is

a scalar, or vice versa.

• An actual argument is an array name while the dummy argument is a scalar, or vice

versa.

• An actual argument is an array element of an assumed-shape or pointer array while

the dummy argument is an array.

591 I array versus scalar conflict

• The argument of a dummy procedure is an array name, while at a previous reference

the argument was a scalar, or vice versa.

592 I arg. is an array element while it was an array in the previous ref.

593 I arg. is an array while it was an array element in the previous ref.

163

594 I the actual argument is an array element while the dummy is an array

595 I shape of argument differs from first occurrence

596 E shape of argument differs from specification

597 I shape of argument differs from specification

598 E actual array or character variable shorter than dummy

• The array or character datum as specified in the procedure is longer than the size

specified the referencing program unit.

599 W array or character length differs form first occurrence

600 E attributes of argument inconsistent with first occurrence

601 E attributes of argument inconsistent with declaration

602 E invalid assignment: actual argument is constant or expression

• The dummy procedure argument is an output or input/output argument and will

modify the actual argument.

603 E invalid assignment:variable more than once in actual argument list

• The variable occurs more than once in an actual argument list so it must not be

modified. The dummy procedure argument is an output or input/output argument

and will modify the actual argument.

604 E invalid assignment: the actual argument is an active DO variable

• The dummy procedure argument is an output or input/output argument and will

modify the actual argument which is an active DO variable.

605 I possible invalid assignment: act.arg. is constant or expression

• The procedure might modify this argument.

606 I possible invalid assignment:var. more than once in act.arg.list

• The variable occurs more than once in the actual argument list and might be modi-

fied during the reference.

607 I possible invalid assignment: actual arg. is active DO variable

• The actual argument is an active DO variable and might be modified during the

procedure reference.

608 I no INTENT specified, specify INTENT(IN) in the referenced subprogram

609 E dummy argument must not be OPTIONAL

610 E optional dummy argument unconditionally used

164 APPENDIX D. MESSAGE SUMMARY

• An optional dummy argument may only be referenced, defined, allocated, or deal-

located if it is present in the actual argument list of the referencing program unit,

unless as an actual argument of a procedure reference if the corresponding dummy

argument is also optional and not a pointer.

611 E actual argument is an optional dummy argument,the dummy argument not

• The procedure is unconditionally referenced while the actual argument is an op-

tional dummy argument of the referencing procedure which may not be present.

612 E optional dummy argument expected

613 E INTENT not allowed for pointer arguments

614 E INTENT(IN) required for this dummy argument

• The arguments of a defined operator function must be defined INTENT(IN).

• The second argument of a defined assignment subroutine must be defined INTENT(IN).

• The arguments of a pure or elemental function must be defined INTENT(IN).

615 E INTENT(OUT) or INTENT(INOUT) required for this dummy argument

• The first argument of a defined assignment subroutine must be defined INTENT(OUT)

or INTENT(INOUT).

616 E referenced input or input/output argument is not defined

• The argument was not defined when the procedure was referenced and not defined

in the procedure before it was unconditionally referenced.

617 I conditionally referenced argument is not defined

• The argument was not unconditionally defined when the procedure was referenced

and it was not defined in the procedure before it was conditionally referenced.

618 I possibly ref. input or input/output argument is possibly not defined

• The argument was not unconditionally defined when the procedure was referenced

and not defined in the procedure before it was referenced.

• The argument was not defined when the procedure was referenced and was possibly

not defined in the procedure before it was referenced.

622 E dummy function must be specified as entry argument

• A dummy function must be specified in the argument list of each ENTRY statement

from where the function is referenced.

623 I intrinsic procedure is specific

165

• By referencing the generic intrinsic procedure instead, the code will be better read-

able, transportable and easier to adapt to different type parameters.

624 E conflict with intrinsic-procedure name

• A generic procedure has been referenced while the name of the generated specific

procedure is already in use as a user defined, dummy, or statement function.

• The name of a common block must not be the name of an intrinsic procedure.

625 W nonstandard Fortran intrinsic procedure

626 E no intrinsic procedure

• A non-intrinsic procedure has been specified in an INTRINSIC statement.

627 E this intrinsic function is not allowed as actual argument

• The intrinsic functions to determine the minimum and maximum and the type con-

version functions must not be passed as an argument.

628 E type conflicts with intrinsic function of the same name

• An intrinsic function has been generated or referenced while an intrinsic function

with the same name and different data type has already been declared or used.

629 E invalid number of arguments for intrinsic procedure

630 E invalid argument type for intrinsic procedure

• The type of the argument of a specific procedure is incorrect.

• No specific procedure could be generated of which the argument type matches the

actual argument type.

• A specific procedure has been generated with an argument type which matches the

argument type of the first argument, but the type of (one of) the other arguments

does not match.

631 E invalid argument type length for intrinsic procedure

• The type length of the argument of a specific procedure is incorrect.

• No specific procedure could be generated of which the argument type length matches

the actual argument type length.

• A specific procedure has been generated with an argument type length which matches

the argument type length of the first argument, but the type length of (one of) the

other arguments does not match.

632 I intrinsic function is explicitly typed

• Intrinsic functions are implicitly typed and need not to appear in a type statement.

166 APPENDIX D. MESSAGE SUMMARY

633 E invalid usage of built-in function

• This built-in function can only be used in an actual argument list.

634 E invalid assignment, variable more than once in statement

• If a variable occurs more than once in a statement it must not be modified during

evaluation of the statement (Fortran 77). The dummy procedure argument is an

output argument and will modify the actual argument.

635 I possible invalid assignment:variable more than once in statement

• The variable occurs more than once in the statement in which the procedure is

referenced and might be modified during the reference (Fortran 77).

636 E INTENT must be specified for this dummy argument

• The intent of the arguments of a pure subprogram must be specified.

• The intent of the arguments of an elemental subprogram that do not have the VALUE

attribute must be specified.

637 E specific procedure has no unique argument list

638 E invalid redefinition of intrinsic operation or assignment

639 I type is not the type of the generic intrinsic function

• Specifying a type for a generic intrinsic function does not, in itself, remove the

generic property from that function.

640 E generic procedure reference could not uniquely be solved

641 E argument must be an allocatable variable

642 E argument must have the POINTER attribute

643 E argument must have the POINTER or TARGET attribute

644 I none of the entities, imported from the module, is used

645 E module must not reference itself directly or indirectly

646 E (MODULE NOT FOUND)

• The module information is not found.

• The library entry found is not a module.

647 E multiple specification of (sub)module

• A (sub)module with the same name has already been analyzed.

648 E conflict between (sub)module and program unit or entry name

167

649 I module already referenced without only or rename list

650 E invalid rename clause

• No generic name, operator, or assignment expected.

• local_name=>module_name expected.

651 I already imported from host or same module

• The entity is in an ONLY list and has already been imported from the same module

in the same or host scoping unit.

• The entity is already imported from the host scoping unit

652 I entity imported from more than one module: do not reference

653 E entity is not a public entity of the imported module

654 I (sub)module unused

• The complete option has been specified and the module is not imported in any of

the analysed program units, or a submodule is not used.

665 I eq. or ineq. comparison of floating point data with constant

• Because of limited precision and different implementations of real and complex

numbers the result of this comparison may be unpredictable.

666 E undefined operation

667 E undefined: dummy argument not in entry argument list

• The variable has been referenced but when entered through the previous ENTRY

statement no value has been assigned to the variable.

668 I possibly undefined: dummy argument not in entry argument list

• The variable has been conditionally referenced but when entered through the pre-

vious ENTRY statement no value has been assigned to the variable.

669 I not locally associated, specify SAVE in the module to retain data

• A target must be associated with a pointer before being defined or referenced. The

variable is not associated in this program unit and is use associated but not saved.

From Fortran 2008 on module data are saved by default.

670 E actual argument must be a variable

• The dummy procedure argument is an output or input/output argument and could

modify the actual argument.

671 E variable more than once in actual argument list

168 APPENDIX D. MESSAGE SUMMARY

• The dummy procedure argument is an output or input/output argument and could

modify the actual argument.

672 E active DO variable invalid for this actual argument

• The dummy procedure argument is an output or input/output argument and could

modify the actual argument.

673 I not locally referenced

• The variable is not referenced in this subprogram. It could have been referenced by

another subprogram using the module.

674 I procedure, program unit, or entry not referenced

• A procedure or program unit (entry) has been explicitly specified but is not refer-

enced.

675 I named constant not used

• A named constant has been defined but is never referenced.

676 I none of the objects of the common block is used

677 I none of the objects of the common block is referenced

678 I none of the entities stored in the library file is used

679 I common-block object not used

680 I common-block object unreferenced

681 I not used

• An entity has been declared and possibly allocated, initialized or assigned, but is

never used.

682 E procedure not defined

• The specified module procedure is not defined in the module.

683 E common-block object not defined before referenced

684 I common-block object possibly not defined before referenced

• The common-block object was conditionally defined.

685 I generic name was not needed to generate a specific procedure

686 E conflict with constant name

• The name of a common block must not be the same as the name of a constant.

687 E type length must be specified by a constant expression

169

• The type length of this object must be known at compile time.

688 E implicit characteristics are inconsistent with those in host context

• The type of the entity has been declared in the host scoping unit however, in the

current scoping unit it appears to be a statement function. You must declare this

entity locally.

• The type of the object has been declared in the host scoping unit however, in the

current scoping unit it appears to be an EXTERNAL or INTRINSIC procedure. You

must declare the entity in the host scoping unit as EXTERNAL or INTRINSIC.

689 I type length inconsistent with type length of function

• All entries within a function must have the same type length. One has the default

length, the other has an explicitly specified type length.

• The type length while referencing the function is inconsistently specified compared

to the specification of the function. One has the default length, the other has an

explicitly specified type length.

690 I type length inconsistent with type length at first reference

• The type length while referencing the function is inconsistently specified compared

to the first reference. One has the default length, the other has an explicitly specified

type length.

• The type length of an actual argument is inconsistently specified compared to the

first reference encountered. One has the default length, the other has an explicitly

specified type length.

• The type length of a common-block object is inconsistently specified compared to

the first reference encountered. One has the default length, the other has an explic-

itly specified type length.

691 I type length inconsistent with specification

• type length of an actual argument is inconsistently specified compared to the speci-

fication of the procedure. One has the default type length, the other has an explicitly

specified type length.

692 E result of procedure must be scalar

693 E storage association conflict with object with the TARGET attribute

• An object with the TARGET attribute may become storage associated only with an-

other object that has the TARGET attribute and the same type and type parameters.

694 E explicitness of dummy proc. argument inconsistent with first occurr.

• If the interface of a dummy procedure argument is explicit in one instance it must

be explicit in each instance.

170 APPENDIX D. MESSAGE SUMMARY

695 E no defined assignment supplied for this type

• If a defined assignment for one or more of the derived type components is present,

you must supply a defined assignment for the type.

696 E entity is not an accessible entity in the host scoping unit

697 E name not explicitly typed, implicit type assumed

• The object has not been explicitly typed and:

• IMPLICIT NONE has been specified.

698 I implicit conversion to more accurate type

699 I implicit conversion of real or complex to integer

• Precision is lost due to conversion to integer.

700 E object undefined

• An attribute is specified for an object which has not been specified.

701 I type length of element inconsistent with first element

• The type length of this array element is inconsistently specified compared to that

of the first element. One has the default length, the other has an explicitly specified

type length.

702 E scalar default character expression expected

703 E a procedure cannot have the POINTER or TARGET attribute

704 E more than once in derived-type parameter list

705 E the VALUE attribute can not be specified for this object

• The VALUE attribute can only be specified for a scalar dummy argument

• The VALUE attribute can not be specified for a character datum with a length other

then one.

706 E a protected object must not be changed outside its module

707 I module procedure not referenced from outside its module

• The module procedure can be declared private.

708 E END INTERFACE statement missing

709 E source expression not allowed for a typed allocation

• type-spec and a source expression cannot be specified both.

710 E only one source expression allowed in a sourced allocation

171

• SOURCE= and MOLD= cannot be specified both.

711 I declared RECURSIVE but not recursively referenced

712 E ancestor or parent (sub)module name missing

713 E interface name missing

714 I abstract interface not referenced

• An abstract procedure interface has been specified but it is not used.

715 E type-bound procedures not allowed in sequence or interoperable type

716 E a component cannot have the name of a type parameter

• KIND or LEN must be specified for a derived-type parameter declaration.

• Only KIND and LEN are valid derived-type parameter attributes.

717 E derived-type parameter not defined

• Each derived-type parameter must be specified with the KIND or LEN attribute.

718 E a CLASS component must be allocatable or a pointer

719 E a procedure component must be a pointer

720 E no components specified in derived-type definition

721 E no type-bound procedures specified

722 E external or module procedure expected

723 E type-bound procedure undefined

724 E DEFERRED attribute required

725 E DEFERRED attribute not allowed

726 E component keyword missing in structure-constructor

• When in a structure-constructor a keyword has been used, all subsequent compo-

nents must be specified using keywords.

727 E keyword missing in type-param-spec-list

• When in a parameter list a keyword has been used, all subsequent parametes must

be specified using keywords.

728 E incorrect, or missing language-binding-spec: BIND(C) expected

• the language-binding-spec must be BIND(C)

729 E no enumerators in enumeration

730 E END ENUM missing

172 APPENDIX D. MESSAGE SUMMARY

731 E interface name not allowed in this context

732 E procedure attributes not allowed in this context

733 E delimiter not allowed in this context

734 E statement only allowed in a (non separate) interface body

735 E explicit or abstract interface required

736 E this intrinsic function not allowed as interface name

737 E TYPE IS, CLASS IS, or CLASS DEFAULT expected after SELECT TYPE

738 E associate name expected

739 E association list missing

740 E selector missing

741 E invalid assignment

742 E the selector must be polymorphic

743 E passed-object dummy argument not found

744 E incorrect number of derived-type parameters

745 E invalid argument kind type parameter for intrinsic procedure

• The kind type parameter of the argument of a specific procedure is incorrect.

• No specific procedure could be generated of which the argument kind type param-

eter matches the actual argument type kind.

• A specific procedure has been generated with an argument kind type parameter

which matches the argument type kind of the first argument, but the type kind of

(one of) the other arguments do not match.

746 I type kind or length inconsistently specified

• The type kind or length of the argument is explicit, the type kind or length of others

is default, or specified as DOUBLE PRECISION.

• The type kind or length of this object in one instance of the common block is explicit,

the type kind or length in the others is default, or specified as DOUBLE PRECISION.

747 E each element in an array constructor must be of the same kind

748 I element kind inconsistent with kind of first element

• The kind of this array element is inconsistently specified compared to that of the

first element. One has the default kind, the other has an explicitly specified kind.

749 E mixing of protected and non-protected objects in equivalence

173

750 W unsupported kind type parameter, default assumed

• The kind type parameter of this type is not supported by the emulated compiler.

751 W unsupported kind, default assumed

• No supported kind can be found that matches.

752 W unsupported character set

• No supported kind can be found for this character set.

753 E each element must have the same kind type parameters

754 E no objects to allocate or to deallocate

755 E unrecognized keyword

756 E type-spec or SOURCE= required

• One or more of the allocate-objects have deferred-type parameters

757 I no entities imported from module

758 E invalid target for a procedure pointer

759 E procedure already in list of final subroutines of this derived type

760 E final procedure has no unique argument list

761 E type parameter specified more than once or unknown

762 E empty parameter list

763 E deferred type parameter not allowed

764 E assumed type parameter not allowed

765 E each length type parameter must be assumed

766 E SEQUENCE type, or BIND attribute not allowed

767 E type must be an extension of the selector

768 E NOPASS must be specified

769 E passed-object argument required.

770 E argument must be a data-object

771 E derived type io procedure must be a subroutine

772 E type must be abstract

773 E argument must be scalar

774 E argument must be polymorphic

174 APPENDIX D. MESSAGE SUMMARY

775 E argument must not be polymorphic

776 E the accessibility of the generic spec must be the same as originaly

777 I the accessibility is inconsistently specified

778 E types are not compatible

779 E a CLASS entity must be dummy, allocatable or a pointer

780 E entity is not accessible

781 E entity must be interoperable

782 E type kind conflict with type kind of function

• All entries within a function must have the same type kind.

• The type kind while referencing the function differs from the specification of the

function.

783 E function type kind inconsistent with first occurrence

• The type kind of the function differs from that at the first reference encountered.

784 I type kind inconsistent with type kind of function

• All entries within a function must have the same type kind. One has the default

kind, the other has an explicitly specified kind.

• The type kind while referencing the function is inconsistently specified compared

to the specification of the function. One has the default kind, the other has an

explicitly specified kind.

785 I type kind inconsistent with type kind at first reference

• The type kind while referencing the function is inconsistently specified compared

to the first reference. One has the default kind, the other has an explicitly specified

kind.

• The type kind of an actual argument is inconsistently specified compared to the

first reference encountered. One has the default kind, the other has an explicitly

specified kind.

• The type kind of a common-block object is inconsistently specified compared to the

first reference encountered. One has the default kind, the other has an explicitly

specified kind.

786 I type kind inconsistent with specification

• The type kind of an actual argument is inconsistently specified compared to the

specification of the procedure. One has the default kind, the other has an explicitly

specified type kind.

175

• The type kind has been specified in one instance, the type length in the other.

787 E invalid usage of abstract type

788 E invalid overriding of binding

789 E component name not unique

790 E component not defined

791 E the derived type must be extensible

792 E entity cannot be an explicit-shape array

793 E INTENT not allowed for nonpointer dummy procedure arguments

794 E entity cannot have the POINTER attribute

795 E entity cannot have the PROTECTED attribute

796 E dummy argument with assumed type parameter expected

797 E dummy argument must not be an elemental procedure

798 E invalid specification of shape

799 E named language binding not allowed

800 E multiple declaration of procedure

801 E derived-type name expected

802 E list of type-bound procedures not allowed

• In Fortan 2003 a list is not supported.

803 E invalid usage of unlimited format item

804 E scalar default integer or character constant expression expected

805 O could not determine type parameter

806 E invalid coarray specification

807 E ENTRY within a FORALL construct

808 E NULL() expected

809 E NULL() or procedure name expected

810 E TYPE IS, CLASS IS, or CLASS DEFAULT at invalid SELECT TYPE level

811 E invalid argument value

812 I derived-type component not used

• None of the objects of the type uses this component.

813 I derived-type component not referenced

176 APPENDIX D. MESSAGE SUMMARY

• None of the objects of the type references this component.

814 I derived-type component not defined

• None of the objects of the type defines this component.

815 I derived-type component not allocated

• None of the objects of the type allocates this component.

816 I derived-type component not associated

• None of the objects of the type associates this component.

817 E incorrect type for a coarray

818 E cannot extend parent type

819 E nonpointer nonallocatable scalar expected

820 E array with the POINTER attribute expected

821 E target must be contiguous

822 E missing coarray specification

823 E function result cannot be a coarray

824 E type of function result must not have a coarray ultimate component

825 E a coarray must be a dummy argument, allocatable, in main, or saved

826 E must be a dummy argument or saved

827 E deferred-coshape specification not allowed

828 E deferred-coshape specification required

829 E array pointer or assumed-shape array expected

830 E actual argument must be a contiguous array

831 E entity cannot be a coarray

832 E type not allowed for an INTENT(OUT) argument

833 E a coarray cannot have the POINTER attribute

834 E invalid usage of coindex or image selector

835 E invalid number of cosubscripts

836 E missing coshape specification

837 E SAVE without entity list invalid in a BLOCK construct

838 I input or input/output argument is not defined

177

• The argument was defined as an input or input/output argument and was not de-

fined when the procedure was referenced.

• The argument was not or conditionally referenced before defined in the procedure

and was not defined when the procedure was referenced.

839 E incorrect usage of coindexed object

840 E target has invalid rank

841 I module object not used outside the module

• The object can be decalred PRIVATE

842 E component must have the POINTER and/or ALLOCATABLE attribute

843 E statement not allowed within a CRITICAL or DO CONCURRENT construct

• A RETURN or an image control statement is not allowed within a CRITICAL or DO

CONCURRENT construct

844 E no corresponding CRITICAL statement found

845 E missing END CRITICAL

846 E a coarray cannot not be (de)allocated within this construct

• A coarray cannot be (de)allocated within a CRITICAL or DO CONCURRENT construct

847 E invalid transfer of control out of construct

848 E invalid list of edit descriptors

849 E scalar character constant expression expected

850 E ancestor module must not be intrinsic

851 E module nature conflict

853 E (sub)module not found

854 E inconsistent attribute

855 E inconsistent dummy argument name

856 E inconsistent characteristics

857 I intrinsic module has the same name as a nonintrinsic module

858 I nonintrinsic module has the same name as an intrinsic module

859 I variable, used as actual argument, unreferenced

• The variable is defined through an actual argument in a referenced procedure but

not referenced in the referencing program unit.

860 E scalar default character constant expression expected

178 APPENDIX D. MESSAGE SUMMARY

861 E inconsistent BIND(C) attribute or binding label

• When a common blockor external procedure has been specified with the BIND(C)

attribute in a certain subprogram, it must be specified with the BIND(C) attribute

and the same binding label in every subprogram in which the common block or

external procedure has been specified.

862 E binding label is not unique

863 E initialization expression expected

864 E an assumed-type entity must be a dummy variable

865 E an assumed-type variable can only be used as an actual argument

866 E an assumed-rank variable can only be used as an actual argument

867 E assumed-shape or assumed-rank argument expected

868 E assumed-rank entity must be a dummy variable

869 E invalid usage of procedure pointer

• A procedure pointer must not be dereferenced in an expression.

870 I dummy argument has no INTENT attribute

871 E INTENT(IN) dummy argument must not be modified

• The INTENT(IN) attribute for a non pointer dummy argument specifies that it shall

not be changed during the execution of the procedure.

872 E INTENT(IN) dummy argument pointer must not be modified

• The INTENT(IN) attribute for a pointer dummy argument specifies that during the

execution of the procedure its association shall not be changed.

873 I INTENT(OUT) dummy argument is not defined

874 I INTENT(OUT) dummy argument pointer is not associated or nullified

875 I INTENT(INOUT) dummy argument is not modified in this procedure

• The INTENT can be changed to INTENT(IN).

876 I INTENT(INOUT) pointer association is not modified in this procedure

• The INTENT can be changed to INTENT(IN).

877 I INTENT(INOUT) dummy argument is defined before referenced

• The INTENT can be changed to INTENT(OUT).

878 I INTENT(INOUT) dummy argument pointer is modified before referenced

179

• The INTENT can be changed to INTENT(OUT).

879 E an explicit RESULT variable must be declared for direct recursion.

880 E specification expression expected

881 E missing END ASSOCIATE(’s)

882 E pointer association is not defined

883 E pointer association of one or more component(s) is not defined

884 I (SOURCE POSSIBLY IN FIXED FORM. DO NOT SPECIFY THE FREE-FORM OPTION)

885 E array element or scalar structure component expected

886 E expression in CASE statement not in range of selector

887 I array unreferenced

• An array has been defined but is not referenced.

888 I array not used

• An array has been declared and possibly allocated, initialized or assigned, but is

never used.

180 APPENDIX D. MESSAGE SUMMARY

Appendix E

References

1. American National Standard Programming Language FORTRAN, American National Stan-

dards Institute, Inc, X3.9-1978, New York, New York, 1978.

2. International Standard ISO/IEC 1539, Second edition 1991-07-01. Reference number ISO/IEC

1539 : 1991 (E), International Standards Organization, Geneva, 1991.

3. American National Standard Language Fortran 90, American National Standards Institute,

Inc., X 3.198-1992, New York, 1992.

4. International Standard ISO/IEC 1539-1, Reference number ISO/IEC 1539-1 : 1997 (E), In-

ternational Standards Organization, Geneva, 1997.

5. International Standard ISO/IEC 1539-1, Reference number ISO/IEC 1539-1 : 2004 (E), In-

ternational Standards Organization, Geneva, 2004.

6. International Standard ISO/IEC 1539-1, Reference number ISO/IEC 1539-1 : 2010 (E), In-

ternational Standards Organization, Geneva, 2010.

7. E.W.Kruyt, FORCHECK, A Fortran 77 Programming Aid, Proceedings of the Digital Equip-

ment Users Society, pp 199-204, Hamburg, 1986.

8. PDP-11 FORTRAN, Language Reference Manual, Digital Equipment Corporation, AA-1855D-

TC, Maynard, Massachusetts, December 1979.

9. PDP-11 FORTRAN-77, Language Reference Manual, Digital Equipment Corporation, AA-

L979-TC, Maynard, Massachusetts, September 1981.

10. VAX FORTRAN, Language Reference Manual, Digital Equipment Corporation, AA-D034E-

TE, Maynard, Massachusetts, June 1988.

11. VAX FORTRAN, User manual, Digital Equipment Corporation, AA-D035D-TE, Maynard,

Massachusetts, June 1988.

12. FORTRAN for RISC, FORTRAN Language Reference Manual for RISC Processors, AA-NA31A-

TE, Digital Equipment Corporation, 1989.

13. FORTRAN for RISC, Guide to FORTRAN Language Programming for RISC Processors, AA-

NA30A-TE, Digital Equipment Corporation, 1989.

181

182 APPENDIX E. REFERENCES

14. DEC Fortran, Language Reference Manual, AA-PU45A-TK, Digital Equipment Corporation,

Maynard, Massachusetts, 1992.

15. DEC Fortran 90, Language Reference Manual, AA-Q66SB-TK, Digital Equipment Corpora-

tion, Maynard, Massachusetts, 1995.

16. Digital Fortran, Language Reference Manual, AA-Q66SC-TK, Digital Equipment Corpora-

tion, Maynard, Massachusetts, 1997.

17. Compaq Fortran, Language Reference Manual, AA-Q66SD-TK, Compaq Computer Corpo-

ration, Houston, Texas, 1999.

18. VS FORTRAN Version 2 Release 5: Language and Library Reference, IBM, fifth edition

(august 1989), SC26-4221-5.

19. VS FORTRAN Version 2 Release 4: Programming Guide, IBM, fifth edition (august 1989),

SC26-4222-4.

20. UNISYS OS1100 ASCII Fortran Programming Reference Manual Relative to Release Level

11R2 UP-8244.4 and UP-8244.4A Unisys Corporation, St. Paul, MN, December 1987.

21. Camilla B. Haase and Jerry W. Ornstein, Fortran 77 Reference Guide, Translator Family

Release T1.0-21.0, DOC4029-5LA, Prime Computer Inc., January 1988.

22. CONVEX FORTRAN Language Reference Manual, Document No. 720-000050-203, Seventh

Edition, CONVEX Computer Corporation, October 1988.

23. CONVEX FORTRAN User’s Guide, Document No. 720-000030-203, Eighth Edition, CONVEX

Computer Corporation, October 1988.

24. FORTRAN Version 1 for NOS/VE, Language Definition, Usage, Publication Number 60485913,

Revision J, Control Data Corporation, 1988.

25. Domain Fortran, Language Reference, Document No. 000530-A01, Hewlett Packard Co.,

December 1990.

26. Sun FORTRAN Programmer’s Guide, Part No: 800-2163-10, Revision A, Sun Microsystems

Inc., 1988.

27. FORTRAN/9000 Reference, HP 9000 Series 300/400 Computers, HP Part Number B1688-

90600, Hewlett-Packard Company, 1990.

28. HP Fortran 77/HP-UX Programmer’s Guide, HP Part Number 92430-9004, Hewlett-Packard

Company, 1988.

29. FORTRAN/9000 Reference, HP 9000 Series 700 Computers, HP Part Number B2408-90001,

Hewlett-Packard Company, 1991.

30. Fortran 90 Programmer’s Reference, HP Document Number B3908-90002, Hewlett-Packard

Company, 1998.

31. RM/FORTRAN, Language Reference Manual (Version 2.4), Ryan-McFarland Corporation,

1987.

183

32. RM/FORTRAN, User’s Guide, Version 2.4 (DOS), Ryan-McFarland Corporation, 1987.

33. IBM Personal Computer Professional FORTRAN Reference Manual, International Business

Machines Corporation, first edition, 1984.

34. Microsoft FORTRAN Version 5.1 for MS OS/2 and MS-DOS Operating Systems, Reference,

Document No. LN21013-0591, Microsoft Corporation, 1991.

35. Microsoft Fortran Power Station, Professional Development System, Version 1.0, for MS-

DOS and Windows Operating systems, Language Guide, document No. DB38033-0293,

Microsoft Corporation, 1993.

36. Microsoft Fortran Power Station, Version 4.0, Development System for Windows 95 and

Windows NT workstation, Programmer’s Guide, document No. DD64081-0995, Microsoft

Corporation, 1995.

37. F77L, Fortran Language System, Reference Manual, Revision E, Lahey Computer Systems,

Inc, August 1989.

38. F77L-EM/32, Fortran Language System, Reference Manual, Revision B, Lahey Computer

Systems, Inc, June 1989.

39. Fortran 90, Language Reference, Revision B, Lahey Computer Systems, Inc, 1995.

40. Lahey/Fujitsu Fortran 95 Language Reference, Revision D, Lahey Computer Systems, Inc,

1998.

41. Lahey/Fujitsu Fortran 95 User’s Guide, Lahey Computer Systems, Inc, 1998.

42. NDP Fortran, Reference Manual, MicroWay, Inc., Kingston, Massachusetts, USA, April 1990.

43. CF77 Compiling System, Volume 1: Fortran Reference Manual, SR-3071 4.0, Cray Research,

Inc., Mendota Heights, Main, USA, June 1990.

44. CF90 Fortran Language Reference Manual, 1995, SR-3902, SR-3903, and SR-3905 2.0. Cray

Research, Inc., Mendota Heights, Main, USA, June 1990.

45. David Bailey, David M. Vallance, Olga Vapenikova, Sara L. Pulford, FTN77/386 Reference

Manual, The University of Salford, 1989.

46. FTN95 User’s Guide, Salford Software Ltd, 1998.

47. XL Fortran for AIX, Language Reference, SC09-2348-00, IBM Corporation, June 1996.

48. XL Fortran for AIX, User’s Guide, SC09-2349-00, IBM Corporation, June 1996.

49. Watcom FORTRAN 77, Language Reference, 5rd Edition, WATCOM International Corp.,

Waterloo, Canada, 1995, ISBN 1-55094-104-6.

50. Control Data 4000 Series. FORTRAN Programmer’s Guide and Language Reference Man-

ual. Publication Number 62940786. Control Data Corporation, Minneapolis, 1990.

51. Fortran 77 Language Reference Manual, document No. 007-0710-040, Silicon Graphics,

Inc. Mountain View, California, 1991.

184 APPENDIX E. REFERENCES

52. NagWare f90 Compiler (VMS), Release 2.0, The Numerical Algorithms Group Limited, Ox-

ford, UK, 1993, ISBN 1-85206-098-0.

53. FORTRAN 77 for Windows 95/Windows NT, Reference Manual, Absoft Corporation, Rochester

Hills, MI, USA, 1995.

54. MIPSpro Fortran 77 Language Reference Manual, Document Number 007-2362-003, Silicon

Graphics, Inc., 1994-1996.

55. Fujitsu Fortran 90 User’s Guide, September 1995, Part No: J2Z0-0080-01-EN, Fujitsu Open

Systems Solutions, Inc, San Jose, CA, USA.

56. Intel Fortran, Programmer’s reference, Version Number: FWL-700-04, Intel Corporation,

USA, 2002

Appendix F

Glossary

active DO variable. A DO variable within the range of a DO loop.

actual argument. An expression, a variable, a procedure, or an alternate return specifier that

is specified in a procedure reference.

aggregate field. A composite, or structured, data item, that is, a (Fortran 77 extension) record

structure or a record substructure.

alphanumeric. A letter or a digit. As an extension the dollar sign is in some implementations

considered a letter.

analysis message. An information, warning, or error message concerning the syntax or static

semantics of the analyzed source program.

ANSI. American National Standards Institute.

argument. A parameter passed between a calling program unit and a procedure. It can be an

actual argument or a dummy argument.

argument association. The relationship between an actual argument and a dummy argument

during the execution of a procedure reference.

argument keyword. A dummy argument name which may be used in a procedure reference.

array. A set of scalar data, all of the same type and type parameters, whose individual elements

are arranged in a rectangular pattern.

array element. One of the scalar data that make up an array. It is identified by the array name

followed by a subscript indicating the position in the array.

array section. A subobject of an array consisting of a set of array elements.

assignment statement. A statement of the form ’variable = expression’.

association. Name association, pointer association, storage association, or inheritance associ-

ation.

185

186 APPENDIX F. GLOSSARY

assumed-shape array A nonpointer dummy array that takes it shape from the associated ac-

tual argument.

assumed-size array A dummy array whose size is assumed from the associated actual argu-

ment. Its last upper bound is specified by an asterisk.

attribute A property of a data object that may be specified in a type declaration statement.

batch job. A number of commands placed in a file and submitted to be processed.

blank common. An unnamed common block.

block. A sequence of executable constructs embedded in another executable construct, bounded

by statements that are particular to the construct, and treated as an integral unit.

block-data program unit. A program unit that provides initial values for data objects in named

common blocks.

bounds. For a named array, the limits within which the values of the subscripts of its array

elements must lie.

byte. A storage unit, generally consisting of eight bits, which can contain a single character.

call tree. See "reference structure".

character. A letter, digit, or other symbol.

character length parameter. The type parameter that specifies the number of characters for

an entity of type character.

character string. A sequence of characters.

character storage unit. The unit of storage for holding a scalar that is not a pointer and is of

type default character and character length one.

class. A set of types extended from a specific type.

collating sequence. An ordering of all the different characters of a particular kind type param-

eter.

command input. The entry of commands to instruct a program to perform the required ac-

tions.

command file. A file containing command input.

command file entry. The entry of commands through specification of a command file.

command line entry. The entry of commands through typing command lines.

common block. A block of physical storage that may be accessed by any of the scoping units

in a program.

common-block object. An entity in a common block denoted by a name: a variable or record

187

(Fortran 77 extension).

common-block size. The number of bytes the common block will occupy.

compiler. A program that translates a program, written in a higher programming language,

into code understood by the computer.

compiler directive. An instruction to the compiler to assist processing of source statements.

compile time. The time during which the compiler processes the source file.

complex constant. An ordered pair of signed or unsigned real or integer constants separated

by a comma and enclosed in parentheses. The first constant of the pair is the real part of the

complex constant, the second is the imaginary part.

complex type. An approximation of the value of a complex number, consisting of an ordered

pair of real data items separated by a comma and enclosed in parentheses. The first item rep-

resents the real part of the complex number, the second represents the imaginary part.

component. A constituent of a derived type.

conditional compilation. Source code lines can be either included in the compilation process

or be left out by applying a compiler directive and a command line option. The simplest com-

piler directive to tag lines to compile conditionally is a D in the first column of the source line.

configuration file. A file containing instructions to adapt a program to the user’s requirements.

conformable. Two arrays are said to be conformable if they have the same shape. A scalar is

conformable with any array.

conformance. A program conforms to the standard if it uses only those forms and relation-

ships described therein, and if the program has an interpretation according to the standard.

A program unit conforms to the standard if it can be included in a program in a manner that

allows the program to be standard conforming.

constant. A data object whose value must not change during execution of a program. It may

be a named constant or a literal constant.

constant expression. An expression satisfying rules that ensure that its value does not vary

during program execution.

construct. A sequence of statements starting with an ASSOCIATE, DO, FORALL, IF, SELECT

CASE, SELECT TYPE, or WHERE statement and ending with the corresponding terminal state-

ment.

construct entity. An entity defined by a lexical token whose scope is a construct.

cross-reference table. A table in which all references to certain entities are listed.

data entity. An entity that has or may have a data value. It may be a data object, the result of

the evaluation of an expression, or the result of a function reference.

188 APPENDIX F. GLOSSARY

data object. A data entity that is a constant, a variable, a record (Fortran 77 extension), or a

subobject of a constant.

data type. See type. debug line. A source code line containing a character denoting conditional

compilation in its first column.

default initialization. If initialization is specified in a type definition, an object of the type will

be automatically initialized.

defined. For a data object, the property of having or being given a valid value.

deleted feature. A feature in a previous Fortran standard that is considered to be redundant

and largely unused.

derived type. A type whose data have components, each of which is either of intrinsic type or

of another derived type.

designator. A name, followed by zero or more component selectors, array section selectors,

array element selectors, and substring selectors.

digit. One of the characters 0 to 9.

DO loop. A range of statements executed repeatedly by a DO statement.

double precision. The standard name for real data that is allocated two numeric storage units

(8 bytes).

DO variable. A variable, specified in a DO statement that is initialized or increased prior to

each execution of the statement or statements within the DO range.

dummy argument. An entity whose name appears in the parenthesized list following the pro-

cedure name in a FUNCTION, SUBROUTINE, ENTRY, or statement function statement (formal

argument).

dummy array. A dummy argument that is an array.

dummy pointer. A dummy argument that is a pointer.

dummy data object. A dummy argument that is a data object.

dummy procedure. A dummy argument that is a procedure.

entity. The term entity is used for any of the following: a program unit, a procedure, an ab-

stract interface, an operator, a generic interface, a common block, an external unit, a statement

function, a type, a data entity, a statement label, a construct, or a namelist group.

entry. The location in the subprogram where execution of the statements starts when the entry

name is referenced.

equivalence. The association of names referring to the same memory location.

equivalence list. A list of names to be associated.

189

executable statement. An instruction to perform or control one or more computational ac-

tions.

exit status. The resulting error level of the execution of a program.

explicit interface. For a procedure referenced in a scoping unit, the property of being an inter-

nal procedure, a module procedure, an intrinsic procedure, an external procedure that has an

interface body, a recursive procedure reference in its own scoping unit, or a dummy procedure

that has an interface body.

explicit type. The type of a name when specified by a type statement.

expression. A sequence of operands, operators, and parentheses. It may be a variable, a con-

stant, a function reference, or may represent a computation.

extension. See Filename extension.

extent. The size of one dimension of an array.

external file. A sequence of records that exists in a medium external to the program.

external i/o. I/O operations performed on an external file.

external procedure. A procedure that is defined by an external subprogram or by means other

than Fortran.

external subprogram. A subprogram that is not in a main program, module, or another sub-

program.

field. An atomic unit of a record (Fortran 77 extension). It corresponds to a substructure, a

variable or an array element.

file. An internal file or an external file.

file access type. The way an external file is accessed: sequential, direct, or stream.

file name extension. The denotation of a file type by extending the file name with a delimiter

followed by a number of characters.

FORCHECK. A computer program to validate Fortran source programs through static analysis.

format type. The way the data is stored in an external file: formatted or unformatted. For-

matted: stored as printable characters (e.g. ASCII or EBCDIC) Unformatted: stored in internal

computer representation.

FORTRAN. An acronym of "Formula Translation" denoting a higher computer language.

FORTRAN 77. The American National Standard Programming Language FORTRAN, as specified

by the American National Standards Institute in document X3.9-1978.

fortran 90. The Standard Programming Language Fortran, as specified by the ISO-1539:1991(E)

document.

190 APPENDIX F. GLOSSARY

fortran 90. The Standard Programming Language Fortran, as specified by the ISO-1539-1:1997(E)

document.

fortran-supplied procedure. See "intrinsic function".

function. A procedure that is invoked in an expression.

function result. The data object that returns the value of a function.

function subprogram. A sequence of statements beginning with a FUNCTION statement that is

not an interface block and ending with the corresponding END statement.

generic identifier. A name that appears in an INTERFACE statement and is associated with all

the procedures in the inerface block or that appears in a GENERIC statement and is associated

with the specific type-bound procedures.

global entity. An entity identified with an identifier whose scope is a program.

global information. All information on global entities that is relevant to other program units

of the program.

global Program Analysis. The analysis across program unit boundaries to verify the global

entities.

hexadecimal constant. A literal constant that is represented by a sequence of digits and the

letters A through F (base-16 notation).

hollerith constant. A string of any characters preceded by wH, where w is the number of char-

acters in the string.

host. Host scoping unit.

host association. The process by which a contained scoping unit accesses entities of its host.

host scoping unit. A scoping unit that immediately surrounds another scoping unit.

identifier. See "Name".

implicit interface. A procedure referenced in a scoping unit other than its own is said to have

an implicit interface if the procedure does not have an explicit interface there.

implicit Type. The default type of a name when no type has been specified by a type specifi-

cation statement.

implied DO. An indexing specification (similar to a DO statement, but without specifying the

word DO) with a list of data elements, rather than a set of statements, as its range.

include file. A file with statements that have to be included in the source code of the program

at the place of the include statement which references the include file.

include path. A file directory at which the system tries to locate include files.

input record. A record of the input source file.

191

input file. A sequence of input records.

inquiry function. An function that is either intrinsic or is defined in an intrinsic module and

whose result depends on properties of one or more of its arguments instead of their values.

intent. An attribute of a dummy data object that indicates whether it is used to transfer data

into the procedure, out of the procedure, or both.

interface block. A sequence of statements from an INTERFACE statement to the corresponding

END INTERFACE statement.

inter-subprogram information. All information on subprograms which is relevant to other

program units of the program (global information).

interactive entry. Specification of program commands and options through a query.

interface of a procedure. See "procedure interface".

internal file. A character variable that is used to transfer and convert data from internal stor-

age to internal storage.

internal i/o. I/O operations performed on an internal file.

internal procedure. A procedure that is defined by an internal subprogram.

internal subprogram. A subprogram in a main program or another subprogram.

intrinsic. An adjective applied to types, operations, assignment statements, procedures, and

modules that are defined in the standard and may be used in any scoping unit without further

definition or specification.

i/o. Pertaining to either input or output, or both.

i/o list. A list of items in an input or output statement specifying which data is to be read or

to be written.

i/o operation code. A symbol denoting the category of input/output operation performed.

keyword. An argument keyword or a word with a special, predefined, meaning for the com-

piler.

kind type parameter. A parameter whose values label the available kinds of an intrinsic type,

or a derived-type parameter that is declared to have the KIND attribute.

label. See "Statement label".

label type. The syntactic construct in which the statement label is used determines its type:

end of a DO loop, identification of a FORMAT statement, or other.

labeled common. See "Named common".

length. Array length, character string length, type length, or record length.

192 APPENDIX F. GLOSSARY

length specification. The specification of the type length.

lexical token. A sequence of one or more characters with a specified interpretation.

library file. An external file consisting of an index and the global information on program

units.

line. A sequence of characters containing (part of) Fortran statements, a comment, or an

INCLUDE line.

list file. A sequential formatted file in which the numbered statements are presented with other

information concerning the source code.

listing. See "List file".

literal constant. A constant without a name.

local entity. An entity identified by a lexical token whose scope is a scoping unit.

logical constant. A constant that can have one of two values: true or false.

logical expression. A combination of logical primaries and logical operators. The result is the

value true or false.

logical operator. Any of the set of operators .NOT., .AND., .OR., .EQV., .NEQV., .XOR.

logical primary. A primary that can have the value true or false. See also "primary".

main program. A program unit that is not a module, external subprogram, or block data pro-

gram unit.

module. A program unit that contains or accesses definitions to be accessed by other program

units.

module procedure. A procedure that is defined by a module subprogram.

module subprogram. A subprogram that is in a module but is not an internal subprogram.

name. A lexical token consisting of a letter followed by up to 62 alphanumeric characters (let-

ters, digits, and underscores). Note that in Fortran 77 this was called a symbolic name.

named. Having a name.

named constant. A constant that has a name. Note that in Fortran 77 this was called a symbolic

constant.

nonexecutable statement. A statement that describes the characteristics of the program unit,

of data, of editing information, or of statement functions, but does not cause an action to be

taken by the program.

nonstandard syntax. Syntax which does not conform to the Fortran standard.

numeric constant. A constant that expresses an integer, real, double precision, or complex

193

number.

numeric type. Integer, real, or complex type.

obsolescent feature. A feature that is considered to have become redundant but that is still in

frequent use.

operation code. A symbol denoting the kind of operation performed on a data object.

operational message. A message presented to signal a problem in the operation of the pro-

gram.

operand. An expression that precedes or succeeds an operator.

operation. A computation involving one or two operands.

operator. A lexical token that specifies an operation.

option. A sub-command to select program features.

output file. A sequential formatted file in which all information requested is stored.

parameter. See "argument".

path. A full file specification.

pointer. An entity that has the POINTER attribute.

pointer assignment. The pointer association of a pointer with a target by the execution of a

pointer assignment statement or the execution of an assignment statement for a data object

of derived type having the pointer as a subobject.

pointer associated. The relationship between a pointer and a target following a pointer assign-

ment or a valid execution of an ALLOCATE statement.

pointer association. The process by which a pointer becomes pointer associated with a target.

primary. An irreducible unit of data; a constant, variable, function reference, or expression

enclosed in parentheses.

procedure. A computation that may be invoked during program execution. It may be a function

or a subroutine. It may be an intrinsic procedure, an internal procedure, an external procedure,

a module procedure, a dummy procedure, or a statement function.

procedure interface. The characteristics of a procedure, the name of the procedure, the name

of each dummy argument, and the generic identifiers (if any) by which it may be referenced.

program. A set of program units that includes exactly one main program.

program interface. The way to instruct the program to perform the required actions.

program unit. The fundamental component of a program. A sequence of statements, com-

ments and INCLUDE lines. It may be a main program, a module, an external subprogram, or a

194 APPENDIX F. GLOSSARY

block data program unit.

qualifier. See "option".

rank. The number of dimensions of an array. Zero for a scalar.

real type. An arithmetic type, capable of approximating the value of a real number.

record. 1) A sequence of values that is treated as a whole within a file. 2) A named data entity,

consisting of one or more fields, contained in the program (Fortran 77 extension).

record length. 1) The number of bytes or storage units that make up an entity in a file. 2) The

number of bytes a record (Fortran 77 extension) occupies.

recursive reference. A subprogram is recursively referenced when the subprogram is invoked

from within that same subprogram, either directly or via other subprograms.

reference structure. The hierarchical call tree in which all references of subprograms are pre-

sented graphically.

reference. The appearance of an object designator in a context requiring the value at that point

during execution, the appearance of a procedure designator, its operator symbol, or a defined

assignment statement in a context requiring execution of the procedure at that point, or the

appearance of a module name in a USE statement.

relational expression. An expression that consists of an arithmetic expression, followed by a

relational operator, followed by another arithmetic expression or a character expression, fol-

lowed by a relational operator, followed by another character expression. The result is a value

that is true or false.

relational operator. Any of the set of operators: .GT., .GE., .LT., .LE., .EQ., .NE.

saved. Variables, records (Fortran 77 extension) and named common blocks can be saved by

specifying them in a SAVE statement to prevent them from becoming undefined after exit of a

subprogram.

scalar. A single datum that is not an array and is not a record (Fortran 77 extension) or aggre-

gate field (Fortran 77 extension).

scale factor. A specification in a FORMAT statement, which changes the location of the decimal

point in a real number.

scope. That part of a program within which a lexical token has a single interpretation. It may

be a program, a scoping unit, a construct, a single statement, or a part of a statement.

scoping unit. One of the following:

A program unit or subprogram, excluding any scoping units in it,

a derived-type definition, or an interface body, excluding any scoping units in it.

.

scratch file. An external file in which temporary information is stored.

195

size. The size of an array, record (Fortran extension), derived type, or common block is the

total number of bytes that make up the entity.

source code. The original text which forms FORTRAN statements.

source code listing. See "list file".

source file. A file containing the original text of a program.

source program. The original text which forms a FORTRAN program.

specific function. An Fortran supplied (intrinsic) function which can be referenced directly or

by referencing a generic function which invokes the specific function depending on the type of

the actual arguments.

specification statement. One of the set of statements that provides the compiler with informa-

tion about the data used in the source program. It supplies the information required to allocate

data storage.

standard conforming. See "conformance".

statement. A sequence of lexical tokens. It may consist of a single line, but can be continued

using a continuation character, or can be limited to occupy part of a line by a separation char-

acter.

statement entity. An entity identified by a lexical token whose scope is a single statement or

part of a statement.

statement function. A procedure specified by a single statement.

statement label. A lexical token consisting of up to five digits that precedes a statement and

may be used to refer to the statement.

static analysis. The analysis of the source code without execution of the program.

static analyzer. A tool to perform static analysis.

static semantics. The meaning of the code as far as it can be directly inferred from the code

without knowing the algorithm.

storage association. The relationship between two storage sequences if a storage unit of one

is the same as a storage unit of the other.

string. A character literal constant.

stride. The increment specified in a subscript triplet.

structure. A scalar data object of derived type (Fortran 90, or 95), or a group of statements

that define the form of a record (Fortran 77 extension).

structure component. The part of an object of derived-type.

subobject. A portion of a data object that may be referenced or defined independently of other

196 APPENDIX F. GLOSSARY

portions.

subprogram. A function subprogram or a subroutine subprogram. Note that in Fortran 77 a

block data program unit was called a subprogram.

subroutine. A procedure that is invoked by a CALL statement or by a defined assignment state-

ment.

subroutine subprogram. A sequence of statements beginning with a SUBROUTINE statement

that is not in an interface block and ending with the corresponding END statement.

subscript. One of the list of scalar integer expressions in an array element selector. Note that

in Fortran 77 the whole list was called the subscript.

subscript triplet. An item in the list of an array section selector that contains a colon and

specifies a regular sequence of integer values.

substring. A contiguous portion of a scalar character string.

suffix. See File name extension.

symbolic constant. See "Named constant".

symbolic name. See "Name".

syntax. The lexical structure of the language.

system Message. A message presented to inform the user of a problem during execution of

the program.

target. A data entity that has the TARGET attribute, or an entity that is associated with a pointer.

truncation. The implicit conversion of a type to another type which occupies less storage, or

conversion of a representation of a real number to an integer.

type. A named category of data that is characterized by a set of values, together with a way

to denote these values and a collection of operators that interpret and manipulate the values.

The set of data values depends on the values of the type parameters.

type declaration. The specification of the type for the name of a constant, variable, or function

by use of an explicit type specification statement.

type length. The number of bytes an object of a specific type occupies.

type parameter. A parameter of a data type.

type statement. A statement to specify the type of a name.

unassigned. See "Undefined".

undefined. The property of a data object of not having a determinate value.

unit identifier. A means of referring to a file in order to use input/output statements.

197

unreferenced. The condition of a data object that no reference is made to that object.

use association. The association of names in different scoping units specified by a USE state-

ment.

variable. A data object whose value can be defined and redefined during the execution of a

program. It may be a named data object, an array element, an array section, a structure com-

ponent, or a substring. Note that in Fortran 77 a variable was always scalar and named.

vector subscript. A section subscript that is an integer expression of rank one.

whole array. A named array, or an array component of a structure with no subscript list.

198 APPENDIX F. GLOSSARY

Index

name

max. number, 120

abort, 39

Absoft Fortran 77, 76

extensions, 103

Absoft Fortran 95, 77

/AC option, 18, 31, 53, 54

access type

external file, 62, 69

actual argument, 66

operation code, 60

aggregate field

information, 119

all columns option, 18, 31, 53, 54

analyse reference structure option, 21, 33, 34,

63, 67

analysis

complete program, 66

program unit, 56

project, 27

selective, 28

/AP option, 34, 66

Apollo/Domain Fortran, 76

extensions, 103

/AQI option, 31

/AR option, 21, 33, 34, 63, 67

argument, 66

dummy function, 55

max. nesting, 120

operation code, 60

argument list

dummy function, 55

length of key list, 120

max. number of objects, 120

problem, 46

verification, 55, 66

array

actual argument, 55

cross reference, 59

dimension, 59

equivalenced, 60

in common, 62, 66

information, 119

length, 62, 69

operation code, 59

rank, 59

type, 58

undefined, 60, 119

unreferenced, 60

array element

actual argument, 55

equivalenced, 60

information, 119

assigned

operation code, 60

/BA option, 45

/BA option, 36, 42

batch option, 36

BLOCK DATA

type code, 57, 68

build file, 51

BYTE, 78

Call tree, 63

call tree, 35, see reference structure

CDIR$ directive, 105

C$DIR directive, 104

CF77 Fortran, 76

CF90 Fortran, 77

changing defaults, 51

character datum

max. length, 120

CLOSE

keyword, 116, 120

199

200 INDEX

/CM option, 43

/CN option, 18, 31

/CO option, 20, 28, 33, 64, 66, 67, 119

command file, 30

command line

example, 38

max. length, 120

options, 37

command line entry, 29

command mode, 29

comment, 54, 103

common block

cross reference, 62, 68

in include file, 63, 67

max. number, 120

max. number of objects, 120

operation code, 60, 62

problem, 46

root, 62

size, 62, 69

specified, 62

type, 68

unreferenced, 34, 62

verification, 66

common-block object

cross reference, 35, 70

in include file, 60

max. number, 120

modified, 70

not associated, 67

undefined, 67, 119

unreferenced, 34, 60, 67

Compaq Fortran, 77

extensions, 104

compiler directive, 103–106, 108, 109

compiler emulation, 15, 43, 51

include file, 44

compiler emulation file, 44

complete program option, 20, 28, 33, 64, 66,

67, 119

compress, 42

configuration file, 15, 75, 76, 113, 116

constant

actual argument, 66

cross reference, 58

in include file, 63

type, 58

unreferenced, 58

continuation lines option, 18, 31

Control Data 4000 Fortran, 76

extensions, 104

Control Data Cyber NOS/VE Fortran, 76

extensions, 105

Convex Fortran, 76

extensions, 104

/CPP option, 18, 31

cpp preprocessing, 104, 106–108, 110

/CR option, 36, 39, 40

Cray Fortran, 77

Cray Fortran 77, 76

extensions, 104

Cray Fortran 90, 77

create library option, 36, 39, 40

cross reference, 10

arrays, 59

common blocks, 62, 66, 68

common-block objects, 70

constants, 58

derived types, 58

entries, 56, 68

external files, 69

include files, 70

intrinsic procedures, 56

labels, 58

max. number of references, 120

module data, 70

module derived type, 70

modules, 69

namelists, 61

operators, 62

procedures, 61, 68

program, 39, 40, 67

program units, 34, 56

records, 60

subprograms, 61, 68

table, 9, 10

variables, 59

Ctrl C, 39

Cyber NOS/VE Fortran, 76

extensions, 105

INDEX 201

DATA

operation code, 60

date format, 50, 52

/DC option, 31

/DE option, 31

DEBUG packets, 108

DEC FORTRAN

extensions, 105

DEC Fortran 90, 77

DEC FORTRAN for Open VMS Alpha, 76

DEC FORTRAN for Ultrix and DIGITAL UNIX,

76

DEC PDP-11 Fortran-77, 76

extensions, 105

DEC VAX Fortran, 76

default

compiler emulation, 51

directories, 51

editor, 51

file name extensions, 51

line numbering, 52

options, 51

statement numbering, 52

default 2 byte integers and logicals option, 32

default 4 byte integers and logicals option, 33

default 8 byte integers and logicals option, 33

default options, 16

default REAL(8) option, 31, 33

defaults, 51

changing, 51

define symbols option, 18, 37

defined

operation code, 60

derived type

cross reference, 58

unreferenced, 58

/DF option, 18, 37

Digital Research Fortran-77, 76

extensions, 105

directive, 78

key, 78

directories, 51

DO loop

max. nesting, 120

DO variable

dummy argument, 66

operation code, 60

double precision option, 31, 33

/DP option, 31, 33

dummy argument

operation code, 60

dummy function

type code, 61

edit, 28

editor, 51

%eject, 103

entry

cross reference, 56, 68

max. number, 120

not analyzed, 67

referenced, 61

type, 58, 68

type code, 57

unreferenced, 66

environmentals

summary, 16

EQUIVALENCE

operation code, 60

equivalence lists

max. number of, 120

error

exit status, 38

/EX option, 32

exit status, 38

error, 38

fatal error, 38

information, 38

overflow, 38

warning, 38

expression

actual argument, 66

max. nesting, 120

operation code, 60

type checking, 33

type length, 66

extensions

Fortran, 43, 75, 79, 112

language, 43, 75, 79, 112

external

202 INDEX

type code, 61, 68

external file

access type, 62, 69

cross reference, 69

format type, 62, 69

limited check, 119

operation code, 63, 69

/F03 option, 22, 32, 44, 53, 54, 79, 113, 116

/F08 option, 32, 53, 54, 79

F2c Fortran 77, 76

extensions, 106

/F77 option, 32, 54, 79

F77L Fortran-77, 76

extensions, 108

/F90 option, 17, 32, 53, 54, 79

/F95 option, 32, 53, 54, 79

fatal error

exit status, 38

FCKLIB, 42

/BA option, 42

/CM option, 43

command, 42

command line, 42

/HE option, 42

input file, 42

interactive mode, 42

/LI option, 43

library file, 42

operation, 42

option, 42

prompt, 42

/RM option, 43

/FF option, 18, 32, 53, 54

field, see record field

file

options, 27

file name

extensions, 51

FORALL index

dummy argument, 66

operation code, 60

FORCHECK

installation, 13

overview, 9

FORCHECK

operation, 25

form feed, 53

format

verification, 119

format type

external file, 62, 69

formatting messages, 48

Fortran 2003 option, 22, 32, 44, 53, 54, 79,

113, 116

Fortran 2008 option, 32, 53, 54, 79

Fortran 77 option, 32, 54, 79

Fortran 90 option, 17, 32, 53, 54, 79

Fortran 95 based on GNU, 77

Fortran 95 option, 32, 53, 54, 79

Fortran extensions, 43, 75, 79, 112

Fortran for HP-UX, 77

Fortran standard option, 22, 33, 43, 53, 54, 79

Fortran 77 standard, 32

free source form, 45, 53

free source form option, 18, 32, 53, 54

FTN77, 76

FTN90, 77

FTN95, 77

Fujitsu Fortran 90, 77

function, see procedure, 66

generic, 56

impure, 56

specific, 56

type, 58, 68

type code, 57, 61, 68

function subprogram, 56

g95, 77

generic function, 56

generic procedure

type code, 61

gfortran, 77

GNU Fortran 77, 76

extensions, 106

GNU Fortran 95, 77

/HE option, 45

/HE option, 42

HP Fortran, 77

HP Fortran 77, 76

INDEX 203

extensions, 106

HP-UX FORTRAN/9000, 76

extensions, 106

I/O list

format verification, 119

/I2 option, 32

/I4 option, 33

/I8 option, 33

IBM Professional Fortran, 76

IBM VS Fortran, 76

extensions, 107

IBM XL Fortran, 77

extensions, 107

/ID option, 36

IF

max. nesting, 120

/IL option, 36, 40, 41, 120

IMPLICIT NONE, 31

implicitly typed option, 31

implied DO

max. nesting, 120

impure, 56

INCLUDE, 103, 104, 106, 107, 109

%INCLUDE, 76, 105

#include, 104

$include, 106

%include, 103

include dependencies option, 36

include directory, 37

max. number of, 120

include file, 15, 53

common block, 67

compiler emulation, 44

cross reference, 70

listing, 34

max. nesting, 120

max. number, 120

path, 39

referenced, 63

unreferenced, 63

unreferenced constant, 58

unreferenced structure, 60

usage, 39

include option, 36, 40, 41, 120

include path option, 18, 37, 39, 120

/INF option, 19, 36

information

exit status, 38

input

operation code, 60

input file

option, 37

input record

max. number of characters, 120

INQUIRE

keyword, 116, 120

$INSERT, 109

installation, 13, 14

directory, 14

distribution kit, 13

password, 13

setup, 15

uninstall, 14

Intel Fortran, 77

extensions, 108

/INTENT option, 33

interactive entry, 29

INTERF, 45, 72

/BA option, 45

/HE option, 45

/LI option, 45

interf, 45

command line, 45

interface, 55

interface block, 71

interface body, 71

interface builder, see INTERF, see INTERF

/INTR option, 33, 56

intrinsic procedure, 56, 66

cross reference, 56

emulation, 113

nonstandard, 113

operation code, 60

type code, 61

intrinsic procedures

max. number, 120

/IP option, 18, 37, 39, 120

keyword

204 INDEX

OPEN/CLOSE/INQUIRE, 116, 120

label

cross reference, 58

max. number, 120

max. number of references, 120

type, 58

Lahey F77L Fortran-77, 76

extensions, 108

Lahey Fortran 90, 77

Lahey Fortran 95, 77

language extensions, 43, 75, 79, 112

length

array, 69

common block, 62, 66, 69

name, 104

record, 60, 69

type, 32

/LG option, 37, 74

/LI option, 45

/LI option, 43

librarian, 42

library file, 29

compress, 42

continuation, 29

default extension, 42

list, 42

maintaining, 42

max. number of, 120

option, 37

remove, 42

specification, 29

usage, 39

wild card, 29

library utility, see FCKLIB

limitations, 119

line numbering, 49, 52

list, 42

%list, 103

list included lines option, 34, 54

list source lines option, 34, 54

list unreferenced items option, 35, 58, 60, 61

listing file, 29

log option, 37, 74

LOGICAL*1, 78

lower case, 53

main program

type code, 57, 68

make, 28

make utility, 51

makefile option, 36

maxima, 120

/MDF option, 34, 65

message

analysis, 46

error, 46

informative, 46

max. number that can be redefined, 120

operational, 46

overflow, 47

redefinition, 47, 118

suppression, 47

system, 46, 47

warning, 46

message format, 48

metrics, 73

Microsoft Fortran, 76

extensions, 108

Microsoft Fortran PowerStation, 76, 77

extensions, 108

/MK option, 36

module

cross reference, 69

type code, 57, 68

unreferenced, 34, 67

usage, 41

verification, 67

module data

cross reference, 35, 70

undefined, 67

unreferenced, 34, 60, 67

module dependencies, 21, 35, 65

file, 45, 65

sub tree, 65

xml file, 34

module dependencies file option, 34, 65

module dependency tree, 21

module derived type

cross reference, 35, 70

INDEX 205

module procedure

type code, 61

module variable

modified, 71

undefined, 34

NagWare f90 Compiler, 77

NagWare f95 Compiler, 77

NagWare nagfor compiler, 77

name, 78

length, 104

name table

length, 120

namelist

cross reference, 61

namelist group, 61

NASoftware Fortran Plus, 77

NDP Fortran, 76

extensions, 109

%nolist, 103

/OB option, 22, 33, 43, 54, 79

obsolescent option, 22, 33, 43, 54, 79

OPEN

keyword, 116, 120

operation, 25

using the IDE, 25

operation code

array, 59

common, 62

equivalenced, 60

external file, 63, 69

procedure, 59

record, 60

subprogram, 59

variable, 59

operator

cross reference, 62

OPTIONS, 104, 105, 108, 109

options, 30

command line, 37

default, 16, 27, 37, 51

example, 38

file, 27

global, 37

global analysis, 33

input file, 37

library, 36, 37

listing, 34, 37

local, 37

miscellaneous, 36

negation, 37

program-unit analysis, 31

project, 27

output

operation code, 60

output tuning, 49

overflow

exit status, 38

page length option, 34

page number, 54, 67

page width option, 34

PARAMETER, 78

password, 14

PathScale Fortran, 77

PDP-11 Fortran-77, 105

extensions, 105

/PL option, 34

Portland Group Fortran, 77

preprocessing option, 18, 31

preprocessor directive, 104

Prime Fortran-77, 76

extensions, 109

print, 28

procedure

actual argument, 55

common block, 68

cross reference, 61, 68

external file, 69

interface, 71

intrinsic, 56

not analyzed, 67

operation code, 59

reference, 66

reference structure, 21, 35, 65

referenced, 61

root, 62, 63

template, 71

type code, 57, 61, 68

unreferenced, 34, 66

206 INDEX

procedures not analyzed

max. number, 120

@PROCESS, 107

process D-lines option, 31

Professional Fortran, 76

program unit

argument list, 55

cross reference, 56

external file, 69

max. number, 120

page number, 67

project, 25

add directory, 26

add files, 26

analysis, 27

create, 26

open, 26

options, 27

remove files, 27

save, 27

prompt, 29

Prospero Fortran, 76

/PW option, 34

/R8 option, 31, 33

/RE option, 33, 55

record

cross reference, 60

dimension, 60

information, 119

length, 69

operation code, 60

undefined, 60, 119

unreferenced, 60

record field

aggregate, 119

information, 119

recursive reference, 63

reference structure, 10, 35, 39, 40, 63

analysis, 63

file, 45, 65

recursive reference, 63

sub tree, 64, 65

xml file, 34

reference structure file option, 34, 63

referenced

common block, 68

entry, 61, 67

external file, 62, 69

function, 66

include file, 63

label, 58

operation code, 60

procedure, 56, 61, 65–67

subprogram, 56, 61, 65–67

relax option, 33, 55

remove, 42

report file option, 37

required configuration, 13

response file entry, 30

/RI option, 33, 36, 44, 46, 54–56, 63, 66, 119

rigorous option, 33, 36, 44, 46, 54–56, 63, 66,

119

/RM option, 43

RM/Fortran, 76

/RP option, 37

/RSF option, 34, 63

Salford Fortran FTN77

extensions, 109

Salford FTN77 Fortran, 76

Salford FTN90 Fortran, 77

/SAVE option, 33

save option, 33

/SB option, 34, 54, 56

/SC option, 35, 70, 120

scalar

actual argument, 55

scratch file, 15, 39

select case

max. number of cases, 120

selective analysis, 28

setup, 15

/SF option, 33, 56

/SH option, 34, 54

show common option, 35, 70, 120

show module dependencies option, 21, 35, 36,

65, 120

show program option, 35, 67

show program unit option, 34, 54, 56

INDEX 207

show public module data option, 35, 70, 120

show public module derived types option, 35,

70, 120

show reference structure option, 21, 35, 63,

65, 120

/SI option, 35, 58, 60, 61

Silicon Graphics MIPSpro Fortran 77, 76

extensions, 110

Silicon Graphics MIPSpro Fortran 90, 77

Silicon Graphics MIPSpro Fortran 95, 77

Silverfrost FTN95 Fortran, 77

/SMD option, 21, 35, 36, 65, 120

/SMT option, 35, 70, 120

/SMV option, 35, 70, 120

source code, 78

listing, 34, 54

source input file, 29

continuation, 29

specification, 29

wild card, 29

/SP option, 35, 67

specific function, 56, 113

specific include option, 36

specific intrinsic procedures option, 33, 56

/SRS option, 21, 35, 63

/SRS option, 21, 35, 65, 120

/SS option, 34, 54

/ST option, 22, 33, 43, 53, 54, 79

statement

max. number of characters, 120

max. number of lines, 120

statement function

operation code, 60

type code, 61

statement numbering, 49, 52

structure, 60

max. nesting, 120

max. number of, 120

undefined, 119

structure component

information, 119

sub tree, 64, 65

subprogram

actual argument, 55

common block, 68

cross reference, 61, 68

external file, 69

interface, 71

max. number, 120

number of, 73

operation code, 59

reference, 66

reference structure, 21, 35

referenced, 61

root, 62, 63

type code, 57, 61, 68

unreferenced, 34, 66

subroutine, see procedure

type code, 57

subscript

max. nesting, 120

substring

max. nesting, 120

substring element

information, 119

Sun Fortran 77, 76

extensions, 110

Sun Fortran 90, 77

Sun Fortran 95, 77

syntax

analysis, 54

Fortran 2003, 75

Fortran 2008, 75

Fortran 77, 32, 75

Fortran 90, 75

Fortran 95, 75

nonstandard, 32

supported, 75

tab, 53, 78

time format, 50, 52

/TR option, 37

tryout, 16

tuning the output, 49

type

access, 62, 69

actual argument, 55, 56

argument, 55

array, 58

block data, 68

208 INDEX

common block, 62, 66, 68

constant, 58

entry, 58, 68

external file, 62, 69

format, 62, 69

function, 58, 61, 66, 68

information, 55

kind, 55, 56, 59, 61, 68

label, 58

length, 55, 59, 61, 66, 68

mixed, 69

numeric, 69

procedure, 68

program, 68

program unit, 57, 61, 68

reference, 66

variable, 58

type checking, 33

type kind, 55, 56

actual argument, 55

function, 61, 66, 68

variable, 59

type length, 55, 56

actual argument, 55

array, 59

function, 61, 66, 68

variable, 59

type verification, 54

types supported, 111

undeclared external procedures option, 32

undeclared intent option, 33

undeclared intrinsic procedures option, 33, 56

undefined

array, 60, 119

common-block object, 34, 67, 119

module data, 67

record, 60, 119

variable, 60, 119

uninstall, 14

Unisys 1100 Fortran-77, 76

extensions, 110

unit identifier, 62, 69

max. number, 120

unreferenced

array, 60

common block, 34, 62

common-block object, 34, 67

constant, 58

derived type, 58

entry, 66

include file, 63

module, 67

module data, 67

procedure, 34, 66

record, 60

subprogram, 34, 66

variable, 60

/UP option, 36, 39, 40

update library option, 36, 39, 40

use acquired interface option, 31

user function, 66

variable

actual argument, 66

cross reference, 59

DO, 66

equivalenced, 60

in common, 62

in include file, 63

operation code, 59

substring, 119

type, 58

undefined, 60, 119

unreferenced, 60

VAX Fortran, 76

extensions, 105

verification of entries, 55

verify program option, 34, 66

view, 28

VIRTUAL, 104, 105, 108

VS Fortran

extensions, 107

/WA option, 19, 36

warning

exit status, 38

warnings option, 19, 36

Watcom Fortran 77, 76

extensions, 110

wild card, 29

INDEX 209

XL Fortran, 77

	Contents
	Introduction
	What does FORCHECK do?
	Why FORCHECK?
	Application Areas
	This manual

	Installation
	The distribution kit
	Password protection and support
	Required configuration
	Installing FORCHECK
	Password
	Uninstalling
	Installation directory
	User settings
	Setup
	Scratch files
	Include files
	Adaptation to your Fortran Compiler
	Specifying default options
	Tryout
	Summary of environmental variables

	Tutorial
	Setup
	Analyzing a single source file
	Suppressing messages
	Producing a source listing with cross-references

	Analyzing more than one source file
	Analyzing all source files in one or more directories
	Analyzing your project: using a command file

	The program analysis
	The reference structure or call tree
	The module dependency tree
	Using library files
	Using modules
	Using third-party libraries

	Portability and conformance to standards
	Standard conformance
	Compiler emulation
	Setting your own, or company standard
	Cross-platform development
	Using include files
	Multi-platform development

	Operation
	Using the IDE
	The project view
	Creating and opening a project
	Adding files to the project
	Adding all files in a directory to the project
	Removing files from the project
	Setting default and project options
	Setting file options
	Saving a project
	Starting the FORCHECK IDE from the Windows Explorer
	Project analysis
	Selective analysis
	View, Edit, Print
	Make

	Using FORCHECK in command mode
	Using Forcheck in interactive mode
	Command line Entry
	Response file entry

	Options
	Program-unit analysis options
	Global analysis options
	Listing options
	Library options
	Miscellaneous options
	Specifying options in command mode

	Example of FORCHECK command input
	Exit status
	Aborting FORCHECK
	The usage of include files
	FORCHECK library files
	Using FORCHECK libraries in the IDE
	Using FORCHECK libraries in command mode

	The usage of modules
	Maintaining library files
	Maintaining library files from the IDE
	Maintaining library files in command mode

	The usage of language extensions
	Compiler emulation and include files

	Generating Fortran 90 interfaces
	Operation of INTERF from the IDE
	Operation of INTERF from the commandline

	Storing the Reference structure and dependency of modules
	Messages
	Operational messages
	Analysis messages
	System messages
	Redefinition and suppression of messages
	Temporary suppression of messages
	Reporting messages

	Tuning the output
	Line or statement numbering
	Date and time format
	Changing default settings from the IDE
	Default Options
	Directories
	Default file name extensions
	Compiler emulation
	Editor
	Build setup
	Source line/statement numbering
	Date/time format

	Analysis
	Program unit analysis
	Interpretation of source code records
	Lay-out of source code listing
	Syntax analysis
	Type verification
	Local verification of argument lists
	Verification of procedure entries
	Fortran intrinsic procedures
	Function procedure
	Program-unit cross references

	Reference structure (Call tree)
	Analysis of the reference structure
	Display of the reference structure
	Display of sub trees of the reference structure
	Reference structure in XML format

	Display of module dependencies
	Display of dependencies for specific modules
	Display of module dependencies in XML format

	Global program analysis
	Verification of procedure references
	Verification of argument lists
	Verification of common blocks
	Verification of modules
	Global program cross references
	Cross references of common-block objects
	Cross references of public module derived types
	Cross references of public module data

	Specification of procedure interfaces
	Using FORTRAN 77 syntax
	Using Fortran 90 syntax
	Using FORCHECK attributes

	Metrics
	Final report

	Supported Fortran syntax
	Compilers supported
	General language extensions supported
	Table with Fortran 77 language extensions
	Table with Fortran 90/95/2003/2008 language extensions
	Absoft Fortran 77 extensions
	Apollo/Domain Fortran extensions
	Compaq Fortran extensions
	Control Data 4000 Fortran extensions
	Convex Fortran extensions
	Cray Fortran 77 extensions
	Cyber NOS/VE Fortran extensions
	DEC PDP-11 Fortran-77 extensions
	DEC FORTRAN and VAX Fortran extensions
	Digital Research Fortran-77 extensions
	F2c Fortran 77 extensions
	GNU Fortran 77 extensions
	HP-UX FORTRAN/9000 and HP Fortran 77 extensions
	IBM AIX XL FORTRAN extensions
	IBM VS Fortran V2 extensions
	Intel Fortran extensions
	Lahey F77L Fortran-77 extensions
	Microsoft Fortran extensions
	NDP Fortran extensions
	Prime Fortran-77 extensions
	Salford Fortran extensions
	Silicon Graphics MIPSpro Fortran 77 extensions
	Sun Fortran 77 extensions
	Unisys 1100 Fortran-77 extensions
	Watcom Fortran 77 extensions
	Changing the configuration file
	GENERAL
	EXTENSIONS
	INTRINSICS
	OCI (OPEN/CLOSE/INQUIRE) specifiers
	MESSAGES
	OUTPUT
	VARIOUS

	Limitations
	Configuration determined limits

	History of changes
	Message summary
	References
	Glossary
	Index

